【已解决】cc1plus: fatal error: cuda_runtime.h: No such file or directory

在conda环境下,作者遇到在安装xFormers时由于cuda头文件缺失导致的编译错误。通过在setup.py中添加CUDA的include目录以及修改~/.bashrc文件的路径设置,最终成功安装xFormers,并能在使用稳定扩散模型(stableDiffusion)时,以低于10G的GPU内存占用运行768x768的图像生成任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前因

我是在conda环境下创建stable diffusion的虚拟环境,虚拟环境下pytorch、cuda和cudnn的版本如下所示。服务器上的CUDA版本是11.2,GPU是P40,内存22G。

import torch
>>> torch.__version__
'1.12.0'
>>> torch.version.cuda
'11.3'
>>> torch.backends.cudnn.version()
8302

运行stable Diffusion,如果没有xFormers进行GPU加速,内存不够。但是xFormers的安装过程是一部血泪史,每次安装都会出现不同的问题。特此记录一下问题,一遍以后出现相同问题时能回头快速查看解决方案。

在执行pip install -e .命令阶段,首先出现了fatal error: cuda_runtime_api.h: No such file or directory,在setup.py中找到CUDAExtension,在include_dirs中添加/usr/local/cuda/include,如下图所示。
在这里插入图片描述
然后再执行pip install -e .命令时,运行有二十多分钟,本以为要大功告成,成功安装xformers时,出现了cc1plus: fatal error: cuda_runtime.h: No such file or directory错误,折腾一下午,终于解决。
在这里插入图片描述

解决方案

首先查看了/usr/local/cuda/include和/usr/local/cuda-11.2/include文件夹,发现cuda_runtime.h文件已然存在。

搜到好多方案都说要在~/.bashrc文件添加如下CUDA路径,我一直添加的都是后两行,source ~/.bashrc更新bashrc文件后,bug一直存在,经过多方尝试,在~/.bashrc文件后面添加下述三行,xformer才能安装成功。看来第一行的CPATH才是最重要的。

export CPATH=/usr/local/cuda-11.2/targets/x86_64-linux/include:$CPATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.2/targets/x86_64-linux/lib:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda-11.2/bin:$PATH

在这里插入图片描述
经过一顿折腾,终于成功安装xformers,运行模型stable-diffusion-2-1生成 768 × 768 768 \times 768 768×768大小的图片,GPU内存占用不到10G,可以愉快玩耍了。

后果

xformers成功安装之后,运行如下命令行,生成下述九宫格可爱的喵咪图片。

python scripts/txt2img.py --prompt “a best-quality photo of a cute cat” --ckpt v2-1_768-ema-pruned.ckpt --config configs/stable-diffusion/v2-inference-v.yaml --H 768 --W 768 --device cuda

在这里插入图片描述

### 解决 CUDA 编译时找不到 `cuda_runtime.h` 文件的方法 当遇到编译错误提示“fatal error: cuda_runtime.h: 没有那个文件或目录”,这通常意味着编译器未能找到 CUDA 的安装路径或者环境变量未正确设置。 #### 方法一:检查并配置环境变量 对于 Linux 系统,可以通过修改 shell 配置文件来确保环境变量已正确定义。具体操作是在 `.bashrc` 或者 `.zshrc` 中添加以下命令[^4]: ```shell export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64 export PATH=$PATH:/usr/local/cuda/bin export CUDA_HOME=/usr/local/cuda export CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/usr/local/cuda/include ``` #### 方法二:更新项目构建脚本中的依赖项声明 如果使用的是基于 CMake 构建系统的项目,则可以在项目的 `CMakeLists.txt` 文件里加入下面两行指令以帮助定位到必要的头文件位置[^3]: ```cmake find_package(CUDA REQUIRED) include_directories(${CUDA_INCLUDE_DIRS}) ``` #### 方法三:验证 Visual Studio 设置 (针对 Windows 用户) 如果是通过 Microsoft Visual Studio 进行开发,在创建新的解决方案之前应该先确认已经按照官方指南完成了 CUDA 工具包与 VS IDE 的集成工作;另外还需注意是否遗漏了某些重要的预处理器宏定义或是链接库选项[^2]. 以上三种方式可以有效处理因缺少 `cuda_runtime.h` 头文件而导致的编译失败情况。建议根据实际使用的操作系统平台和个人习惯选择合适的方式来解决问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马鹤宁

谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值