【已解决】cc1plus: fatal error: cuda_runtime.h: No such file or directory

前因

我是在conda环境下创建stable diffusion的虚拟环境,虚拟环境下pytorch、cuda和cudnn的版本如下所示。服务器上的CUDA版本是11.2,GPU是P40,内存22G。

import torch
>>> torch.__version__
'1.12.0'
>>> torch.version.cuda
'11.3'
>>> torch.backends.cudnn.version()
8302

运行stable Diffusion,如果没有xFormers进行GPU加速,内存不够。但是xFormers的安装过程是一部血泪史,每次安装都会出现不同的问题。特此记录一下问题,一遍以后出现相同问题时能回头快速查看解决方案。

在执行pip install -e .命令阶段,首先出现了fatal error: cuda_runtime_api.h: No such file or directory,在setup.py中找到CUDAExtension,在include_dirs中添加/usr/local/cuda/include,如下图所示。
在这里插入图片描述
然后再执行pip install -e .命令时,运行有二十多分钟,本以为要大功告成,成功安装xformers时,出现了cc1plus: fatal error: cuda_runtime.h: No such file or directory错误,折腾一下午,终于解决。
在这里插入图片描述

解决方案

首先查看了/usr/local/cuda/include和/usr/local/cuda-11.2/include文件夹,发现cuda_runtime.h文件已然存在。

搜到好多方案都说要在~/.bashrc文件添加如下CUDA路径,我一直添加的都是后两行,source ~/.bashrc更新bashrc文件后,bug一直存在,经过多方尝试,在~/.bashrc文件后面添加下述三行,xformer才能安装成功。看来第一行的CPATH才是最重要的。

export CPATH=/usr/local/cuda-11.2/targets/x86_64-linux/include:$CPATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.2/targets/x86_64-linux/lib:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda-11.2/bin:$PATH

在这里插入图片描述
经过一顿折腾,终于成功安装xformers,运行模型stable-diffusion-2-1生成 768 × 768 768 \times 768 768×768大小的图片,GPU内存占用不到10G,可以愉快玩耍了。

后果

xformers成功安装之后,运行如下命令行,生成下述九宫格可爱的喵咪图片。

python scripts/txt2img.py --prompt “a best-quality photo of a cute cat” --ckpt v2-1_768-ema-pruned.ckpt --config configs/stable-diffusion/v2-inference-v.yaml --H 768 --W 768 --device cuda

在这里插入图片描述

### 错误分析 `cc1plus.exe: fatal error: xxx: No such file or directory compilation terminated` 类型的错误通常表明编译器无法找到指定文件。这可能是由于以下几个原因之一: - 文件路径配置不正确。 - 缺少必要的开发工具或库文件。 - 环境变量未正确设置。 具体到 `hello.c` 的情况,可能是因为源文件不存在于当前目录或者编译命令中的路径有误[^1]。 --- ### 解决方案 #### 1. 检查文件是否存在 确认 `hello.c` 是否存在于当前工作目录下。可以运行以下命令来验证: ```bash ls -l hello.c ``` 如果文件不存在,则需要重新创建该文件或将正确的文件放置在适当位置。 #### 2. 配置正确的文件路径 如果 `hello.c` 存在于其他目录中,请提供完整的路径给编译器。例如: ```bash gcc /path/to/hello.c -o hello ``` #### 3. 安装必要依赖项 对于某些特定头文件缺失的情况(如 `stdio.h` 或 `cuda_runtime.h`),需要安装对应的开发包。以下是针对不同场景的具体操作方法: ##### (a) 头文件 `stdio.h` 缺失 此问题通常是由于缺少标准 C 库开发文件引起的。可以通过以下命令修复: ```bash sudo apt-get update sudo apt-get install build-essential ``` 此外,还可以通过检查并更新 `libc6-dev` 来解决问题: ```bash dpkg -l | grep libc6 sudo apt-get install --reinstall libc6-dev ``` ##### (b) CUDA 相关头文件缺失 (`cuda_runtime.h`) 当遇到与 CUDA 相关的错误时,需确保已正确安装 NVIDIA CUDA 工具链,并将其路径加入环境变量。执行以下步骤: 1. 下载并安装最新版本的 CUDA Toolkit:https://developer.nvidia.com/cuda-downloads 2. 设置环境变量: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` #### 4. 清理旧构建缓存 有时之前的失败构建会留下残留数据,影响后续编译过程。尝试清理项目后再重新编译: ```bash make clean rm -rf ./build/ mkdir build && cd build cmake .. make ``` --- ### 总结 上述解决方案涵盖了从基础文件存在性校验到复杂依赖管理等多个层面的内容。实际应用过程中可根据具体情况逐一排查直至问题得到彻底解决。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马鹤宁

谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值