定积分求导例题_微积分2

本文详细介绍了微积分中的求导与积分概念及其在极值求解、函数作图、定积分应用等多个方面的作用。讨论了极值点与驻点的关系,阐述了求解极值的步骤,并提供了多个实例。此外,文章还涵盖了不定积分、定积分的基本公式、换元积分法和分部积分法,以及定积分在求面积和体积等问题上的应用。
摘要由CSDN通过智能技术生成

8ac95e13be5155b4ecb54a809a474606.png

极值与最值

  • 极大(小)值:函数在
    内有定义,对于
    (去心邻域),
    ,
    为极大值,
    为极大值点;
    ,
    为极小值,
    为极小值点。极值为局部概念,极值不唯一且不一定相等
  • 定理:如果
    处可导,且在
    处取到极值,则
  • 证:
    邻域内,
    取到极大值。

左导数

(由于是邻域,而不是去心邻域,所以有等号)右导数
(极值点一定是驻点,驻点不一定是极值点)
  • 总结:①可导函数的极值点一定是驻点;②驻点不一定是极值点(例
    );③导数不存在的点也可能是极值点;④极值点要么是驻点,要么导数不存在的点;⑤驻点、导数不存在的点未必都是极值点
  • 定理:
    的邻域
    内连续,在邻域内(
    点可除外)可导,且
    或者不存在。

①左增右减为极大值:

,
;
,

②左减右增为极小值:

,
;
,

③左右都增(减):

(去心邻域),
不变号,则
不是极值
  • 求极值的步骤:①求定义域,找导数=0和导数不存在的点;②考察
    左右符号是否发生变化:a.左正右负→极大值 b.左负右正→极小值 c.左右不变号→不是极值点;③求函数值
  • 例:求
    的极值 定义域

6c1810eb4de01cb14ff7ee6868f86b99.png
  • 例:求
    定义域
    ,

导数不存在;
为驻点

ef95f9fabefa367665b6e93ffecad742.png
  • 定理:如果
    处有二阶导数,
    ,
    ,①
    极大值②
    极小值
  • 证明:①

;若
;所以
点为极大值
  • ,
    ,
    点既可能是极大值点,也可能是极小值点,还可能既不是极大值点,也不是极小值点(例:(0,0)
    (极大),
    (极小),
    (非极值))
  • 例:

驻点:

,
,为极小值;
,
,非极值
  • 最值:在
    上有定义,
    ,
    ,
    为最大值,
    为最大值点;
    ,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值