学术前沿趋势分析 Task2:论文作者统计

该博客介绍了如何使用Pandas进行论文作者统计,包括统计作者姓名出现频率的Top10、作者姓氏的Top10以及姓氏首字母的频率。在计算机视觉领域(cs.CV),华人作者在发表论文上表现突出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、任务说明

  • 任务主题:论文作者统计,统计所有论文作者出现评率Top10的姓名;
  • 任务内容:论文作者的统计、使用 Pandas 读取数据并使用字符串操作;
  • 任务成果:学习 Pandas 的字符串操作;

二、任务思路

首先导入数据集,只保留作者信息(authors,authors_parsed)和论文类别信息(categories)。
然后把不同领域每个作者信息提取出来,统计频率。

三、具体代码实现及解释

1、导入数据

# 导入所需的package
import seaborn as sns #用于画图
from bs4 import BeautifulSoup #用于爬取arxiv的数据
import re #用于正则表达式,匹配字符串的模式
import requests #用于网络连接,发送网络请求,使用域名获取对应信息
import json #读取数据,我们的数据为json格式的
import pandas as pd #数据处理,数据分析
import matplotlib.pyplot as plt #画图工具
import json
data = []
with open("arxiv-metadata-oai-snapshot.json", 'r') as f: 
    for idx, line in enumerate(f): 
        d = json.loads(line)
        d = {'authors': d['authors'], 'categories': d['categories'], 'authors_parsed': d['authors_parsed']}
        data.append(d)
        
data = pd.DataFrame(data)
print(data.head())

数据形式如下:
在这里插入图片描述

2、作者统计

我们选取论文最多的cs.CV领域进行分析:

data = data[data['categories'].apply(lambda x: 'cs.CV' in x)] #apply() 方法,都是对整个对象上个各个值进行单独处理,返回一个新的对象.

1)统计所有作者姓名出现频率的Top10

把authors_parsed列中所有出现的作者都合并到一个list中去。

all_authors = sum(data_CV['authors_parsed'],[])#此处用sum非常方便
# 拼接所有的作者
authors_names = [' '.join(x) for x in all_authors]
authors_names = pd.DataFrame(authors_names)

绘制直方图:

# 根据作者频率绘制直方图
plt.figure(figsize=(10, 6))
authors_names[0].value_counts().head(10).plot(kind='barh',color = 'gray')

# 修改图配置
names = authors_names[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')

在这里插入图片描述

2)统计所有作者姓的出现频率的Top10;

统计所有作者姓的时候,只选取作者list里第一个元素即可。

# 拼接所有的作者
authors_lastnames = [x[0] for x in all_authors]
authors_lastnames = pd.DataFrame(authors_lastnames)
# 根据作者频率绘制直方图
plt.figure(figsize=(10, 6))
authors_lastnames[0].value_counts().head(10).plot(kind='barh',color = 'gray')

# 修改图配置
names = authors_lastnames[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')

在这里插入图片描述
可以看到CV领域发表论文最多的10位作者以华人为主。

3)统计所有作者姓第一个字符的频率。

统计第一个字符与上文方法类似:

# 拼接所有的作者
authors_firstchar = [x[0][0] for x in all_authors]
authors_firstchar = pd.DataFrame(authors_firstchar)
# 根据作者频率绘制直方图
plt.figure(figsize=(10, 6))
authors_firstchar[0].value_counts().head(10).plot(kind='barh',color = 'gray')

# 修改图配置
names = authors_firstchar[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')

在这里插入图片描述

3、总结

  • data = data[data[‘categories’].apply(lambda x: ‘cs.CV’ in x)] #apply() 方法,都是对整个对象上个各个值进行单独处理,返回一个新的对象.
  • all_authors = sum(data_CV[‘authors_parsed’],[])#此处用sum非常方便
  • authors_lastnames[0].value_counts().head(10).plot(kind=‘barh’,color = ‘gray’)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值