学术前沿趋势分析 Task2:论文作者统计
一、任务说明
- 任务主题:论文作者统计,统计所有论文作者出现评率Top10的姓名;
- 任务内容:论文作者的统计、使用 Pandas 读取数据并使用字符串操作;
- 任务成果:学习 Pandas 的字符串操作;
二、任务思路
首先导入数据集,只保留作者信息(authors,authors_parsed)和论文类别信息(categories)。
然后把不同领域每个作者信息提取出来,统计频率。
三、具体代码实现及解释
1、导入数据
# 导入所需的package
import seaborn as sns #用于画图
from bs4 import BeautifulSoup #用于爬取arxiv的数据
import re #用于正则表达式,匹配字符串的模式
import requests #用于网络连接,发送网络请求,使用域名获取对应信息
import json #读取数据,我们的数据为json格式的
import pandas as pd #数据处理,数据分析
import matplotlib.pyplot as plt #画图工具
import json
data = []
with open("arxiv-metadata-oai-snapshot.json", 'r') as f:
for idx, line in enumerate(f):
d = json.loads(line)
d = {'authors': d['authors'], 'categories': d['categories'], 'authors_parsed': d['authors_parsed']}
data.append(d)
data = pd.DataFrame(data)
print(data.head())
数据形式如下:
2、作者统计
我们选取论文最多的cs.CV领域进行分析:
data = data[data['categories'].apply(lambda x: 'cs.CV' in x)] #apply() 方法,都是对整个对象上个各个值进行单独处理,返回一个新的对象.
1)统计所有作者姓名出现频率的Top10
把authors_parsed列中所有出现的作者都合并到一个list中去。
all_authors = sum(data_CV['authors_parsed'],[])#此处用sum非常方便
# 拼接所有的作者
authors_names = [' '.join(x) for x in all_authors]
authors_names = pd.DataFrame(authors_names)
绘制直方图:
# 根据作者频率绘制直方图
plt.figure(figsize=(10, 6))
authors_names[0].value_counts().head(10).plot(kind='barh',color = 'gray')
# 修改图配置
names = authors_names[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')
2)统计所有作者姓的出现频率的Top10;
统计所有作者姓的时候,只选取作者list里第一个元素即可。
# 拼接所有的作者
authors_lastnames = [x[0] for x in all_authors]
authors_lastnames = pd.DataFrame(authors_lastnames)
# 根据作者频率绘制直方图
plt.figure(figsize=(10, 6))
authors_lastnames[0].value_counts().head(10).plot(kind='barh',color = 'gray')
# 修改图配置
names = authors_lastnames[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')
可以看到CV领域发表论文最多的10位作者以华人为主。
3)统计所有作者姓第一个字符的频率。
统计第一个字符与上文方法类似:
# 拼接所有的作者
authors_firstchar = [x[0][0] for x in all_authors]
authors_firstchar = pd.DataFrame(authors_firstchar)
# 根据作者频率绘制直方图
plt.figure(figsize=(10, 6))
authors_firstchar[0].value_counts().head(10).plot(kind='barh',color = 'gray')
# 修改图配置
names = authors_firstchar[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')
3、总结
- data = data[data[‘categories’].apply(lambda x: ‘cs.CV’ in x)] #apply() 方法,都是对整个对象上个各个值进行单独处理,返回一个新的对象.
- all_authors = sum(data_CV[‘authors_parsed’],[])#此处用sum非常方便
- authors_lastnames[0].value_counts().head(10).plot(kind=‘barh’,color = ‘gray’)