三重积性质
a
×
(
b
×
c
)
=
b
(
a
⋅
c
)
−
c
(
a
⋅
b
)
.
\boldsymbol{a}\times\left(\boldsymbol{b}\times\boldsymbol{c}\right)=\boldsymbol{b}\left(\boldsymbol{a}\cdot\boldsymbol{c}\right)-\boldsymbol{c}\left(\boldsymbol{a}\cdot\boldsymbol{b}\right).
a×(b×c)=b(a⋅c)−c(a⋅b).
(
a
×
b
)
×
c
=
b
(
a
⋅
c
)
−
a
(
b
⋅
c
)
.
\left(\boldsymbol{a}\times\boldsymbol{b}\right)\times\boldsymbol{c}=\boldsymbol{b}\left(\boldsymbol{a}\cdot\boldsymbol{c}\right)-\boldsymbol{a}\left(\boldsymbol{b}\cdot\boldsymbol{c}\right).
(a×b)×c=b(a⋅c)−a(b⋅c).
向量的拉格朗日公式
( a × b ) ⋅ ( c × d ) = ( a ⋅ c ) ( b ⋅ d ) − ( a ⋅ d ) ( b ⋅ c ) . \left(\boldsymbol{a}\times\boldsymbol{b}\right)\cdot\left(\boldsymbol{c}\times\boldsymbol{d}\right)=\left(\boldsymbol{a}\cdot\boldsymbol{c}\right)\left(\boldsymbol{b}\cdot\boldsymbol{d}\right)-\left(\boldsymbol{a}\cdot\boldsymbol{d}\right)\left(\boldsymbol{b}\cdot\boldsymbol{c}\right). (a×b)⋅(c×d)=(a⋅c)(b⋅d)−(a⋅d)(b⋅c).
证明
- 向量点乘和叉乘的矩阵乘法表达形式
统一使用列向量方式 a = ( a x a y a z ) \boldsymbol{a}=\begin{pmatrix}a_x\\a_y\\a_z\\\end{pmatrix} a= axayaz 表示,那么易知 a ⋅ b = a ⊤ b \boldsymbol{a}\cdot\boldsymbol{b}=\boldsymbol{a}^\top\boldsymbol{b} a⋅b=a⊤b。规定 a × ≡ [ 0 − a z a y a z 0 − a x − a y a x 0 ] \boldsymbol{a}_\times\equiv\begin{bmatrix}0&-a_z&a_y\\a_z&0&-a_x\\-a_y&a_x&0\\\end{bmatrix} a×≡ 0az−ay−az0axay−ax0 ,那么直接按照定义很容易推得 a × b = a × b \boldsymbol{a}\times\boldsymbol{b}=\boldsymbol{a}_\times\boldsymbol{b} a×b=a×b。 - 向量三重积性质的证明
a × ( b × c ) + c ( a ⋅ b ) = [ 0 − a z a y a z 0 − a x − a y a x 0 ] [ 0 − b z b y b z 0 − b x − b y b x 0 ] ( c x c y c z ) + ( a x b x + a y b y + a z b z ) [ 1 0 0 0 1 0 0 0 1 ] ( c x c y c z ) = [ − a y b y − a z b z a y b x a z b x a x b y − a z b z − a x b x a z b y a x b z a y b z − a x b x − a y b y ] ( c x c y c z ) + [ a x b x + a y b y + a z b z 0 0 0 a x b x + a y b y + a z b z 0 0 0 a x b x + a y b y + a z b z ] ( c x c y c z ) = [ a x b x a y b x a z b x a x b y a y b y a z b y a x b z a y b z a z b z ] ( c x c y c z ) = ( b x b y b z ) ( a x a y a z ) ( c x c y c z ) = b a ⊤ c = b ( a ⋅ c ) . \begin{aligned} &\boldsymbol{a}\times\left(\boldsymbol{b}\times\boldsymbol{c}\right)+\boldsymbol{c}\left(\boldsymbol{a}\cdot\boldsymbol{b}\right)\\ =&\begin{bmatrix}0&-a_z&a_y\\a_z&0&-a_x\\-a_y&a_x&0\\\end{bmatrix}\begin{bmatrix}0&-b_z&b_y\\b_z&0&-b_x\\-b_y&b_x&0\\\end{bmatrix}\begin{pmatrix}c_x\\c_y\\c_z\end{pmatrix}+\left(a_xb_x+a_yb_y+a_zb_z\right)\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\\\end{bmatrix} \begin{pmatrix}c_x\\c_y\\c_z\end{pmatrix}\\ =&\begin{bmatrix} -a_yb_y-a_zb_z&a_yb_x&a_zb_x\\ a_xb_y&-a_zb_z-a_xb_x&a_zb_y\\ a_xb_z&a_yb_z&-a_xb_x-a_yb_y\\ \end{bmatrix} \begin{pmatrix}c_x\\c_y\\c_z\end{pmatrix}\\ &+\begin{bmatrix}a_xb_x+a_yb_y+a_zb_z&0&0\\0&a_xb_x+a_yb_y+a_zb_z&0\\0&0&a_xb_x+a_yb_y+a_zb_z\\\end{bmatrix} \begin{pmatrix}c_x\\c_y\\c_z\end{pmatrix}\\ =&\begin{bmatrix} a_xb_x&a_yb_x&a_zb_x\\ a_xb_y&a_yb_y&a_zb_y\\ a_xb_z&a_yb_z&a_zb_z\\ \end{bmatrix} \begin{pmatrix}c_x\\c_y\\c_z\end{pmatrix}\\ =&\begin{pmatrix}b_x\\b_y\\b_z\end{pmatrix}\begin{pmatrix}a_x&a_y&a_z\end{pmatrix}\begin{pmatrix}c_x\\c_y\\c_z\end{pmatrix}\\ =&\boldsymbol{b}\boldsymbol{a}^\top\boldsymbol{c}\\ =&\boldsymbol{b}\left(\boldsymbol{a}\cdot\boldsymbol{c}\right)\\ \end{aligned}. ======a×(b×c)+c(a⋅b) 0az−ay−az0axay−ax0 0bz−by−bz0bxby−bx0 cxcycz +(axbx+ayby+azbz) 100010001 cxcycz −ayby−azbzaxbyaxbzaybx−azbz−axbxaybzazbxazby−axbx−ayby cxcycz + axbx+ayby+azbz000axbx+ayby+azbz000axbx+ayby+azbz cxcycz axbxaxbyaxbzaybxaybyaybzazbxazbyazbz cxcycz bxbybz (axayaz) cxcycz ba⊤cb(a⋅c).
从而有
a × ( b × c ) = b ( a ⋅ c ) − c ( a ⋅ b ) . \boldsymbol{a}\times\left(\boldsymbol{b}\times\boldsymbol{c}\right)=\boldsymbol{b}\left(\boldsymbol{a}\cdot\boldsymbol{c}\right)-\boldsymbol{c}\left(\boldsymbol{a}\cdot\boldsymbol{b}\right). a×(b×c)=b(a⋅c)−c(a⋅b).
( a × b ) × c = − c × ( a × b ) = − a ( c ⋅ b ) + b ( c ⋅ a ) = b ( a ⋅ c ) − a ( b ⋅ c ) . \begin{aligned} &\left(\boldsymbol{a}\times\boldsymbol{b}\right)\times\boldsymbol{c}\\ =&-\boldsymbol{c}\times\left(\boldsymbol{a}\times\boldsymbol{b}\right)\\ =&-\boldsymbol{a}\left(\boldsymbol{c}\cdot\boldsymbol{b}\right)+\boldsymbol{b}\left(\boldsymbol{c}\cdot\boldsymbol{a}\right)\\ =&\boldsymbol{b}\left(\boldsymbol{a}\cdot\boldsymbol{c}\right)-\boldsymbol{a}\left(\boldsymbol{b}\cdot\boldsymbol{c}\right) \end{aligned}. ===(a×b)×c−c×(a×b)−a(c⋅b)+b(c⋅a)b(a⋅c)−a(b⋅c). - 向量拉格朗日公式的证明
根据上面第一条三重积性质,和混合积的性质 p ⋅ ( q × r ) = det ( [ p q r ] ) = det ( [ q r p ] ) = q ⋅ ( r × p ) \boldsymbol{p}\cdot\left(\boldsymbol{q}\times\boldsymbol{r}\right)=\det\left(\begin{bmatrix}\boldsymbol{p}&\boldsymbol{q}&\boldsymbol{r}\\\end{bmatrix}\right)=\det\left(\begin{bmatrix}\boldsymbol{q}&\boldsymbol{r}&\boldsymbol{p}\\\end{bmatrix}\right)=\boldsymbol{q}\cdot\left(\boldsymbol{r}\times\boldsymbol{p}\right) p⋅(q×r)=det([pqr])=det([qrp])=q⋅(r×p),有:
( a × b ) ⋅ ( c × d ) = ( c × d ) ⋅ ( a × b ) = a ⋅ [ b × ( c × d ) ] = a ⋅ [ c ( b ⋅ d ) − d ( b ⋅ c ) ] = ( a ⋅ c ) ( b ⋅ d ) − ( a ⋅ d ) ( b ⋅ c ) . \begin{aligned} &\left(\boldsymbol{a}\times\boldsymbol{b}\right)\cdot\left(\boldsymbol{c}\times\boldsymbol{d}\right)\\ =&\left(\boldsymbol{c}\times\boldsymbol{d}\right)\cdot\left(\boldsymbol{a}\times\boldsymbol{b}\right)\\ =&\boldsymbol{a}\cdot\left[\boldsymbol{b}\times\left(\boldsymbol{c}\times\boldsymbol{d}\right)\right]\\ =&\boldsymbol{a}\cdot\left[\boldsymbol{c}\left(\boldsymbol{b}\cdot\boldsymbol{d}\right)-\boldsymbol{d}\left(\boldsymbol{b}\cdot\boldsymbol{c}\right)\right]\\ =&\left(\boldsymbol{a}\cdot\boldsymbol{c}\right)\left(\boldsymbol{b}\cdot\boldsymbol{d}\right)-\left(\boldsymbol{a}\cdot\boldsymbol{d}\right)\left(\boldsymbol{b}\cdot\boldsymbol{c}\right)\\ \end{aligned}. ====(a×b)⋅(c×d)(c×d)⋅(a×b)a⋅[b×(c×d)]a⋅[c(b⋅d)−d(b⋅c)](a⋅c)(b⋅d)−(a⋅d)(b⋅c). - 向量叉积长度的证明。
由向量的拉格朗日公式有:
∥ a × b ∥ 2 = ( a × b ) ⋅ ( a × b ) = ( a ⋅ a ) ( b ⋅ b ) − ( a ⋅ b ) ( b ⋅ a ) = ∥ a ∥ 2 ∥ b ∥ 2 − ∥ a ∥ 2 ∥ b ∥ 2 cos 2 θ a b = ∥ a ∥ 2 ∥ b ∥ 2 sin 2 θ a b . \begin{aligned} &{\left\Vert\boldsymbol{a}\times\boldsymbol{b}\right\Vert}^2\\ =&{\left(\boldsymbol{a}\times\boldsymbol{b}\right)}\cdot{\left(\boldsymbol{a}\times\boldsymbol{b}\right)}\\ =&{\left(\boldsymbol{a}\cdot\boldsymbol{a}\right)}{\left(\boldsymbol{b}\cdot\boldsymbol{b}\right)}-{\left(\boldsymbol{a}\cdot\boldsymbol{b}\right)}{\left(\boldsymbol{b}\cdot\boldsymbol{a}\right)}\\ =&{\left\Vert\boldsymbol{a}\right\Vert}^2{\left\Vert\boldsymbol{b}\right\Vert}^2-{\left\Vert\boldsymbol{a}\right\Vert}^2{\left\Vert\boldsymbol{b}\right\Vert}^2\cos^2\theta_{\boldsymbol{a}\boldsymbol{b}}\\ =&{\left\Vert\boldsymbol{a}\right\Vert}^2{\left\Vert\boldsymbol{b}\right\Vert}^2\sin^2\theta_{\boldsymbol{a}\boldsymbol{b}} \end{aligned}. ====∥a×b∥2(a×b)⋅(a×b)(a⋅a)(b⋅b)−(a⋅b)(b⋅a)∥a∥2∥b∥2−∥a∥2∥b∥2cos2θab∥a∥2∥b∥2sin2θab.
从而有
∥ a × b ∥ = ∥ a ∥ ∥ b ∥ sin θ a b . {\left\Vert\boldsymbol{a}\times\boldsymbol{b}\right\Vert}={\left\Vert\boldsymbol{a}\right\Vert}{\left\Vert\boldsymbol{b}\right\Vert}\sin\theta_{\boldsymbol{a}\boldsymbol{b}}. ∥a×b∥=∥a∥∥b∥sinθab.
其中向量点积的长度可以简单由余弦定理推出:
∥ a ∥ 2 + ∥ b ∥ 2 − 2 a ⋅ b = a ⋅ a + b ⋅ b − a ⋅ b − b ⋅ a = ( a − b ) ⋅ ( a − b ) = ∥ a − b ∥ 2 = ∥ a ∥ 2 + ∥ b ∥ 2 − 2 ∥ a ∥ ∥ b ∥ cos θ a b . \begin{aligned} &{\left\Vert\boldsymbol{a}\right\Vert}^2+{\left\Vert\boldsymbol{b}\right\Vert}^2-2\boldsymbol{a}\cdot\boldsymbol{b}\\\ =&\boldsymbol{a}\cdot\boldsymbol{a}+\boldsymbol{b}\cdot\boldsymbol{b}-\boldsymbol{a}\cdot\boldsymbol{b}-\boldsymbol{b}\cdot\boldsymbol{a}\\ =&{\left(\boldsymbol{a}-\boldsymbol{b}\right)}\cdot{\left(\boldsymbol{a}-\boldsymbol{b}\right)}\\ =&{\left\Vert\boldsymbol{a}-\boldsymbol{b}\right\Vert}^2\\ =&{\left\Vert\boldsymbol{a}\right\Vert}^2+{\left\Vert\boldsymbol{b}\right\Vert}^2-2{\left\Vert\boldsymbol{a}\right\Vert}{\left\Vert\boldsymbol{b}\right\Vert}\cos\theta_{\boldsymbol{a}\boldsymbol{b}} \end{aligned}. ====∥a∥2+∥b∥2−2a⋅ba⋅a+b⋅b−a⋅b−b⋅a(a−b)⋅(a−b)∥a−b∥2∥a∥2+∥b∥2−2∥a∥∥b∥cosθab.
从而有
a ⋅ b = ∥ a ∥ ∥ b ∥ cos θ a b . {\boldsymbol{a}\cdot\boldsymbol{b}}={\left\Vert\boldsymbol{a}\right\Vert}{\left\Vert\boldsymbol{b}\right\Vert}\cos\theta_{\boldsymbol{a}\boldsymbol{b}}. a⋅b=∥a∥∥b∥cosθab..
至于向量叉积的方向,由混合积的性质有 a ⋅ ( a × b ) = b ⋅ ( a × a ) = 0 \boldsymbol{a}\cdot\left(\boldsymbol{a}\times\boldsymbol{b}\right)=\boldsymbol{b}\cdot\left(\boldsymbol{a}\times\boldsymbol{a}\right)=\boldsymbol{0} a⋅(a×b)=b⋅(a×a)=0, b ⋅ ( a × b ) = a ⋅ ( b × b ) = 0 \boldsymbol{b}\cdot\left(\boldsymbol{a}\times\boldsymbol{b}\right)=\boldsymbol{a}\cdot\left(\boldsymbol{b}\times\boldsymbol{b}\right)=\boldsymbol{0} b⋅(a×b)=a⋅(b×b)=0,知 a \boldsymbol{a} a 和 b \boldsymbol{b} b 均与 a × b \boldsymbol{a}\times\boldsymbol{b} a×b 垂直,再结合 ( 1 0 0 ) × ( 0 1 0 ) = ( 0 0 1 ) \begin{pmatrix}1\\0\\0\\\end{pmatrix}\times\begin{pmatrix}0\\1\\0\\\end{pmatrix}=\begin{pmatrix}0\\0\\1\\\end{pmatrix} 100 × 010 = 001 即可知道叉乘方向为右手系与两向量垂直。