DeepSeek基于Ollama本地部署及集成IDEA

最近,国产大模型 DeepSeek 凭借其强大的性能和广泛的应用场景,迅速成为 AI 领域的焦点。然而,随着用户数量的激增,DeepSeek 的在线服务时常面临访问压力,导致响应延迟甚至服务中断的情况。幸运的是,DeepSeek 作为一款开源模型,为用户提供了本地部署的解决方案。


为什么选择本地部署 DeepSeek?

  • 稳定高效:无需担心网络波动或服务器压力,本地部署确保模型始终高效运行。
  • 隐私安全:数据完全存储在本地,避免敏感信息外泄,保障用户隐私。
  • 灵活便捷:支持离线使用,随时随地调用模型,满足多样化需求。
  • 开源自由:DeepSeek 的开源特性让用户可以根据需求自定义优化,打造专属 AI 工具

1. 安装Ollama

我们可以访问 https://ollama.com/ 进入 Ollama 官网下载 Ollama ,下载时有三个系统的安装包可选择,这里只需要选择下载我们电脑对应的操作系统版本即可,这里我选择的是 Mac 版本。

Ollama 安装包下载完成后直接双击安装即可。

安装成功验证

1、 Ollama 安装完成后需要打开电脑的终端 ,也就是命令提示符,输入 ollama --version 并按回车键,这个操作是为了验证这个软件是否安装成功,如果显示如下版本提示说明安装成功。
 

2、浏览器输入  http://localhost:11434/   也可以验证Ollama安装成功,如果安装失败检查11434端口是否被占用。

 

2.下载部署 Deepseek 模型

回到  https://ollama.com/ 网址中,在网页上方搜索框中输入 Deepseek-r1,这个 Deepseek-r1 就是我们需要本地部署的一个模型。
点击 Deepseek-r1 后会进入详情界面,里面有多个参数规模可供选择,从 1.5b 到 671b 都有。
 

 

需注意的是,这里我们需要根据自己电脑的硬件配置来选择模型大小。其中,具体用多少B的模型主要需要看内存(M芯片用户)。(windows用户看显卡显存)。

  • 8G内存:1.5B (1.1GB模型大小)
  • 16G内存:8B及以下(4.9GB模型大小)
  • 32G内存:14B及以下(9GB模型大小)
  • 64G内存及以上:32B及以下(20GB模型大小)

我是想要电脑低负载一点去长期跑,所以我这里就用8B模型了。

2.1 通过Ollama下载模型

注意根据自己电脑的配置,在终端(命令提示符)进行复制相应的命令去执行下载。


 

由于我下载的deepseek-r1:8b模型,对应就是 ollama run deepseek-r1:8b 命令

 

如果发现下载速度奇慢,可以根据contrl+c键取消本次下载,然后重新输入部署命令。只要没有退出Ollama,下载可以断点续传。

### DeepSeek 本地部署教程:数据分析环境搭建 #### 准备工作 为了顺利进行 DeepSeek本地部署并用于数据分析,需先准备好必要的软件和硬件资源。确保计算机配置满足最低要求,并安装好 Python 环境以及虚拟环境工具如 `venv` 或者 Anaconda[^1]。 #### 安装依赖库 通过命令行创建一个新的Python虚拟环境来隔离项目所需的包版本: ```bash python -m venv deepseek_env source deepseek_env/bin/activate # Linux/MacOS .\deepseek_env\Scripts\activate # Windows ``` 激活虚拟环境后,按照官方文档中的指导安装所需的所有依赖项。通常可以通过 pip 来完成这一操作: ```bash pip install -r requirements.txt ``` 其中 `requirements.txt` 文件包含了运行 DeepSeek 所必需的各种第三方库列表。 #### 获取模型文件 下载 Ollama 提供的预训练模型或其他适用的数据集。这部分可能涉及到注册账号获取API密钥等流程,具体步骤可参照相关平台说明[^2]。 #### IDE集成设置 推荐使用 IntelliJ IDEA 这样的开发工具来进行代码编写与调试。在IDEA中导入DeepSeek项目的源码结构,并配置解释器指向之前建立好的虚拟环境中。这样就可以利用IDE的强大功能提高工作效率了。 #### 测试验证 一切准备就绪之后,在交互界面输入简单的指令测试是否能够正常响应中文请求: ```plaintext >>> 你好,请用中文回答 你好!我是DeepSeek-R1,很高兴为您提供帮助! ``` 如果得到预期回复,则表明整个系统的搭建已经初步成功[^3]。 #### 开始数据处理任务 现在可以根据实际需求加载不同的模块执行特定类型的分析作业。比如自然语言理解(NLU),机器翻译(MT)等功能都可以基于此框架快速实现原型设计与迭代优化。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值