MES系统最全介绍来了

制造型企业在生产过程中,或多或少都会遇到以下生产问题:

1、生产现场管理混乱,造成人力资源和物流的浪费;

2、生产进度不透明,给业务和跟单带来诸多不便;

3、不能及时了解产品不良率,质量控制难度大;

4、仓储管理不规范,造成材料积压过多,物料查找麻烦;

5、急单交期短,订单频繁变更怎么办;

6、纸质报表难以统计分析

MES系统能全方位管理生产过程,通过现场车间看板对生产以及设备数据进行多维度交互展示,打造可视化生产车间,打造透明工厂,解决企业智能制造难题,为企业降本增效!

MES系统到底是什么?

MES系统是一套面向制造企业车间执行层的生产信息化管理系统。MES可以为企业提供包括制造数据管理、计划排程管理、生产调度管理、库存管理、质量管理、人力资源管理、工作中心/设备管理、工具工装管理、采购管理、成本管理、项目看板管理、生产过程控制、底层数据集成分析、上层数据集成分解等管理模块,为企业打造一个扎实、可靠、全面、可行的制造协同管理平台。

制造执行系统协会在MES定义中强调了以下三点:

1、MES是对整个车间制造过程的优化,而不是单一的解决某个生产瓶颈;

2、 MES必须提供实时收集生产过程中数据的功能,并作出相应的分析和处理。

3、MES需要与计划层和控制层进行信息交互,通过企业的连续信息流来实现企业信息全集成。

MES系统的功能有哪些?

1、管理企业或导入ERP中的计划,并将工厂级的生产计划逐级分解为生产现场作业的工序计划。

2、打造可视化现场,即时掌控良品数量、生产工时及完工比率,透过电子看板,因应状况调整机台稼动、人员派工以及停滞短缺异常管理,最终提效降本。

3、根据产品数据和资源情况,分析生产能力,及时发现瓶颈问题,对有关进行和后续进行的生产、工序计划进行灵活的调整。

4、加强了生产现场的监控,通过自动识别、即时记录和数据采集,减少了人工操作,对物料的准备、短缺或错误,能够及时知道并采取行动,加快了与生产制造的匹配节奏。

5、改进了生产流程,减少了手工作业单、统计等环节,以及人工造成的差错,解决生产业务数据录入滞后的问题,车间管理效率大幅提升。

6、生产过程的即时记录,清晰物料的流向和状态,半成品/产品能够根据记录进行有效的追溯,如追溯产品使用的工艺工序、原料提供商、批次、操作员、生产时间等。任意视角和环节的前追后溯,故障定位及责任界定明确,管理到位。

7、提供订单进度,工单生产状况、制作进度、良率状况、缺料资讯、机台状态,能够及时预估和提醒物料和半成品供应。

8、能即时监控机台生产状态,改善产能利用率,追踪人员调派履历、派工状态,有效配置资源。

在信息、技术飞速发展的当下,国内的制造业企业只有紧跟时代的潮流,做好信息化升级、智能改造,用现代化的科技手段提升企业的生产、管理模式,发展企业的核心竞争力,才能在激烈的市场竞争中保持自身优势。


————————————————
版权声明:本文为CSDN博主「慧都科技智能制造」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_42211283/article/details/118088078

<think>好的,用户的问题是关于他们工厂已经部署了DeepSeek,是否需要继续投喂数据,以及他们工厂的排单和路线规划是否需要通过代码来操作,或者DeepSeek能否独立完成这些任务。用户还想知道应该学习什么课程来用代码操作DeepSeek。 首先,我需要明确DeepSeek的具体功能。根据之前的回答,DeepSeek可能是一个智能系统,具备数据处理和自动化排单、路线规划的能力。用户可能已经部署了该系统,但不确定后续的数据输入需求和系统操作方式。 接下来,关于数据投喂的问题。通常,AI系统在部署后是否需要持续的数据输入取决于系统的设计。如果系统是自学习的,可能需要持续的数据来优化模型。但如果系统是静态的,可能只需要初始数据。需要确认DeepSeek是否需要持续的数据更新,比如新的订单数据、生产线变动等,以保持排单和路线规划的准确性。 然后是排单和路线规划的操作方式。用户想知道是否需要通过编写代码来操作DeepSeek,还是系统可以自动处理。如果DeepSeek有API接口,用户可能需要学习编程来调用接口,实现自动化的排单和插单。如果系统有用户界面,可能不需要编程,直接通过界面操作即可。需要了解DeepSeek的集成方式和提供的接口类型。 用户提到的“学习什么课程用代码来使用你”表明用户可能希望自己或团队具备通过代码与DeepSeek交互的能力。可能的课程包括Python编程、API使用、自动化脚本编写,以及数据处理相关的课程如数据分析、机器学习基础等。 同时,需要确认DeepSeek是否具备独立处理排单和路线规划的能力,或者是否需要人工干预。如果系统能够自动处理,用户只需确保数据输入正确;如果系统需要配置或调整参数,可能需要一定的技术背景。 可能存在的误解是用户认为DeepSeek可能需要持续的主动数据投喂,而实际上系统可能已经具备足够的训练数据,或者需要的是实时业务数据的输入而非再训练。需要澄清数据投喂的具体含义,是指模型训练数据还是日常业务数据。 总结回答结构: 1. 数据投喂需求:根据系统设计,是否需要持续数据输入,建议咨询供应商。 2. 操作方式:是否需要编程,取决于系统接口,学习Python、API集成等课程。 3. 系统能力:确认DeepSeek能否自动处理排单和路线规划,或需要配置。 需要确保回答清晰,分点说明,并提供实际建议,如联系供应商确认细节,推荐具体学习资源等。</think>关于您的问题,可以分两部分解答: ### 一、是否需要持续投喂数据? 1. **常规情况** - **若已部署成熟模型**:日常使用一般只需输入业务数据(如订单/设备状态),无需持续训练模型。但建议定期收集异常数据反馈给厂商优化模型。 - **若使用持续学习模式**:需要定期投喂新生产数据(如工艺改进后的排产记录),可通过配置数据管道自动完成。 2. **操作建议** 联系DeepSeek实施团队确认当前部署模式,通常工业场景为保障稳定性会采用"冻结模型+定期升级"方案。 ### 二、排单与路线规划的操作方式? 1. **系统能力** - **标准功能**:DeepSeek应具备可视化排单界面,支持人工插单、自动生成方案 - **高级定制**:复杂需求(如与MES系统集成/特殊约束规则)需通过API对接 2. **建议学习路径** | 需求级别 | 推荐技能 | 学习资源 | |---|---|----| | 基础操作 | 系统GUI使用 | 厂商培训文档 | | 中级扩展 | REST API调用 + Python基础 | 《Python编程:从入门到实践》+ Postman工具 | | 深度集成 | 运筹学基础 + 排产算法 | Coursera《运筹学导论》+ 阿里云《APS系统开发》课程 | 3. **典型工作流示例** ```python # 通过Python调用排产API的伪代码 import requests auth_token = "your_api_key" order_data = { "order_id": "PO-20231201", "products": ["A-01", "B-02"], "deadline": "2023-12-15" } response = requests.post( "https://api.deepseek.com/scheduling", headers={"Authorization": f"Bearer {auth_token}"}, json=order_data ) if response.status_code == 200: schedule = response.json() print(f"推荐生产路径:{schedule['optimal_path']}") ``` ### 三、行动建议 1. 优先参加厂商提供的《系统管理员培训》 2. 要求实施团队提供API文档(通常含Swagger接口说明) 3. 生产异常时记录详细场景数据(如插单冲突实例),这些数据对优化更重要于日常数据 工业AI系统的价值往往体现在与业务场景的深度磨合,初期建议聚焦业务逻辑数字化,技术集成可逐步推进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值