干货 | 呆滞库存(Slow moving)产生原因分析和预防措施

http://blog.itpub.net/29829936/viewspace-2643364/

 

干货 | 呆滞库存(Slow moving)产生原因分析和预防措施

 

什么是呆滞库存?

指的是在企业生产活动过程中,周转速度较慢的库存,也被叫做Slow moving。这些库存可以是原材料、在制品和成品。

对于周转速度较慢的定义上就是见仁见智了,在不同的行业、企业里有着各自的标准,有些公司把可使用量超过半年的定义为呆滞品。

一般来说,某种物料的可供使用消耗日期超过一年,就可以认定为Slow moving。

关于使用日期的选择,有些企业采用过去的历史销售数据,这是向后看,有些企业采用实订单+预测的数据,这是向前看。

具体用哪个数据,需要企业结合实际情况自行判断,也有企业取两种数据的平均值作为依据。

干货 | 呆滞库存(Slow moving)产生原因分析和预防措施

 

需要注意的是,呆滞库存不是死库存,虽然库存周转率比正常的物料要低,但是依然是有客户订单或生产订单的需求的。

死库存是指彻底没有需求的物料,比如说生命周期终结的产品,或是升级迭代后淘汰的老版本零件,这些是真的没有任何用途的物料,放在仓库里,无法用于生产装配或是销售出去,只能报废处理掉。

计算物料的周转速度,我们可以用Day inventory On Hand (DOH),就是某个物料可供消耗使用的库存有多少天。

DOH指标反映的是所有原材料、在制品和成品,根据客户的平均需求,可以使用的天数。

对于原材料和在制品,需要根据MPS(主生产计划)和MRP(物料需求计划)的计算结果来进行换算。

成品计算过程就比较简单,把成品库存总数除以客户需求量即可。

DOH是使用客户平均需求和现有实际的库存数量来进行的计算,比较适用于客户需求波动较小的场景,如果需求波动很大,或者是新开发的产品,就不太适合用DOH公式来进行分析了。

DOH计算公式

DOH =(所有在库和在途品库存) / (Σ 需求数量 / 汇总时间)

关键点:

1. 如果在途品库存所有权也是企业的,那么记得要把在途品也计算在内。

2. 如果需求数量是统计一年的,那么就要除以全年的工作日,来计算出每天的平均需求量。

3. 对于客户需求,一般是由实订单(Firm order)加上预测信息来计算平均需求。汇总数量时间长度至少要在半年以上,这样可以对客户需求有比较准确的把握。半年的时长,是MPS主计划制定的标准,也是S&OP计划最低的时间要求。

4. 对于是相关需求(Dependent demand)的原材料和在制品,需要根据MPS/MRP的运行结果来作为平均需求。

干货 | 呆滞库存(Slow moving)产生原因分析和预防措施

 

相关需求是指与其他需求有内在相关性的需求,也被称为非独立需求。相关需求是根据BOM计算出来的,而不是预测的结果。

在上图中,汽车的购买者是最终的消费者,所以是独立需求。轮毂如果是给整车厂客户供货,比如供应给上海通用,轮毂就是相关需求。

如果是在后市场渠道销售的,轮毂就是独立需求。也就说,某些产品既可以是独立需求,又可以是相关需求。铝合金肯定是相关需求了,没有哪个终端消费者会向企业购买铝合金原料的。

干货 | 呆滞库存(Slow moving)产生原因分析和预防措施

 

呆滞库存是怎么产生的?

库存品是用来消耗的,一旦某个物料成为了呆滞库存,比正常品需要更多的时间来完成库存周转,就说明物料的消耗速度变得慢了,产生了“代谢变慢”的情况。

让我们用人体来举个例子,一个普通办公室白领男性,每天会消耗大约2400 kcal热量,如果他每天摄入食物的热量大于2400 kcal,多余的热量就会转换成脂肪储存起来。

干货 | 呆滞库存(Slow moving)产生原因分析和预防措施

 

因为热量摄入和消耗的不均衡产生了脂肪,同样也是因为生产或采购了过量的物料,无法及时消耗掉,而产生了呆滞库存。

总而言之,呆滞库存就是因为生产了过多的在制品和成品,采购了过多的原材料,或者是客户需求减少等原因造成的。

如果某个生产环节是瓶颈,那么在这个工位之前,很有可能会堆积过量的在制品。如果某个原材料的MOQ最小起订量可以供一年的消耗,那么一旦入库以后,也会成为呆滞品。

有一类物料不在考虑之内,那就是新品New product。这种物料是全新引入市场的,此前从未在企业里有任何的销售数据,因此很难计算出平均需求量和可使用天数。

新品即使消耗的速度很慢,在一定时间以内,不能被认定为是呆滞库存。短期内的销量低迷,接下来有可能成为爆款,因此不能把新品列入呆滞品计算范畴内。

干货 | 呆滞库存(Slow moving)产生原因分析和预防措施

 

如何预防呆滞品产生?

最简单的方法就是,当看到仓库里某个原材料库存已经过量了,那就通知物料计划停止下订单!

如何设定这个量?需要根据供应商的交货提前期Lead time和安全库存Safety stock来进行判断,需要根据具体情况在系统里设定物料的参数。

干货 | 呆滞库存(Slow moving)产生原因分析和预防措施

货架上有红色标签的都是呆滞库存,把过量物料隔离出来,贴上醒目的标签,提醒物料计划停止采购。

当然我们还是要依靠事先预防的方法,通过流程来控制物料。想要杜绝呆滞品,就需要保持供应和需求的平衡,就像是想要保持好身材,每天摄入和消耗热量必须均衡是一样的道理。

通过识别和测量在供需之间的差距,使用各种市场、调价、或其他方式,来解决供需间的不平衡问题。

在供应链管理中,供需平衡是通过流程来实现的,其中最主要的就是通过S&OP或产销平衡来实现。

干货 | 呆滞库存(Slow moving)产生原因分析和预防措施

 

有些呆滞品是由于系统数据错误造成的,比如物料的采购数量MOQ、包装数量、交货期、安全库存参数之类的数值错误,甚至是一些物料计划员的手工输入错误,都会导致购买了额外数量的物料,最终成为了呆滞库存。

有了流程,接下来就要设定考核的指标,比如说就是前文中提到的DOH,可以计算出每一种物料的库存天数。

如何来提取出所需要的数据进行计算?

有些是可以直接从ERP系统定制报表来提取,比如SAP报表可以实现这个功能。

如果ERP系统没有这项功能,只能手动从ERP系统的后台数据库提取数据,在Excel表格中进行数据分析。

如果企业连ERP系统都没有该怎么分析?至少需要有库存的数据和平均需求使量,也是在Excel表格中进行分析计算,操作步骤上需要更多的手工操作。

干货 | 呆滞库存(Slow moving)产生原因分析和预防措施

 

做呆滞品库分析的人需要具备哪些能力和经验?

1.数据分析能力

需要知道从哪些地方可以获取到相关数据,计算的基本逻辑,分析数据的能力。

2.预测管理

需要懂得S&OP和需求预测流程。

3.库存管理

需要理解库存的基本原理,各种库存产生的根本原因。

4.供应链表现评估

能够设定物料考核目标,制作分析报告。

干货 | 呆滞库存(Slow moving)产生原因分析和预防措施

 

呆滞品占据了企业大量的流动资金,如果不加以预防,公司资金的流动性就会变差。积极主动预防,时刻回顾检查,制定改善行动,优化库存结构。这样才能有效地让呆滞品快速地周转起来,疏通企业的“血管”,提高供应链健康指标。

- END -

### 回答1: Spark Streaming 和 Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间和数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存和磁盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节点故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大和灵活,而 Spark Streaming 则更适合批处理和数据仓库等场景。 ### 回答2: Spark Streaming 和 Flink 都是流处理框架,它们都支持低延迟的流处理和高吞吐量的批处理。但是,它们在处理数据流的方式和性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性和可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理和状态管理,因此 Flink 更适合处理需要精确时间戳和状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存和离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理和计算过程是实时进行的,不需要缓存和离散化处理。 3. 机器资源和负载均衡 Spark Streaming 采用了 Spark 的机器资源调度和负载均衡机制,它们之间具有相同的容错和资源管理特性。而 Flink 使用 Yarn 和 Mesos 等分布式计算框架进行机器资源调度和负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转和窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口和滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间和处理时间上进行窗口处理,并且支持增量聚合和全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算和批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、Flume和HDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器学习和流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming 和 Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求和业务场景。 ### 回答3: Spark Streaming和Flink都是流处理引擎,但它们的设计和实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特点和差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量和低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储和读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源和商业的数据存储,如Kafka、Cassandra和Elasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型和不同的调度器和优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark Streaming和Flink都是流处理引擎,它们有各自的优缺点。在选择使用哪一个流处理引擎时,需要根据实际业务场景和需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理和一些通用的窗口计算,Spark Streaming是更为简单的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值