“优化都不懂,你还想做机器学习?”

https://www.toutiao.com/a6703724933777719816/

机器学习的基础是什么?是“数学”,而“优化”就是数学中的核心知识之一。

而且在机器学习遇到的复杂优化问题(非凸,不熟悉的),最高效的方法就是利用凸优化的思路去解决。

小七这次把《机器学习中的数学 第二期》,中关于优化的部分PPT送给大家。

其中优化问题简介、凸集合与凸函数、优化和凸优化是属于非常基础的部分,后续两大板块有一定难度。

目录:

一、优化问题简介

二、凸集合与凸函数

知识点:

  • 凸集合与凸函数的关系

  • 琴生不等式的几何解释

三、优化与凸优化

知识点:

  • 凸优化问题

  • 对偶问题

  • 对偶性

  • KKT条件

  • 拉格朗日乘数法

四、支持向量机(SVM)简介

知识点:

  • 线性分类器

  • 对偶方法推导SVM

  • 几何方法推导SVM

五、压缩感知简介

知识点:

  • 信号还原问题

  • 压缩感知

  • 求解压缩感知的优化方法

  • Lasso方法与优化的稳定性

优化问题简介

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

凸集合与凸函数

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

局部极值与全局极值:

 

“优化都不懂,你还想做机器学习?”

 

凸函数的重要性质:局部极值一定是全局极值

(下图左侧为凸函数,右侧为非凸函数)

 

“优化都不懂,你还想做机器学习?”

 

凸优化

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

当原问题只有等式约束而没有不等式约束时,KKT条件即为拉格朗日乘数法。

阶段总结

  • 优化问题在机器学习的模型训练中有重要应用。

  • 凸函数代数性质与凸集合的几何性质;琴生不等式的几何解释。

  • 凸优化是一类相对简单的优化问题;凸函数的局部最小值就是全局最小值。

  • 对偶方法的主要目的是处理原问题中的复杂边界条件;对偶问题永远是凸问题; 弱对偶性永远成立,可以为原问题提供下界。

  • KKT条件可以用来求解一些优化问题;拉格朗日乘数法是KKT条件的一种特殊形式。

支持向量机简介

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

压缩感知介绍

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

向量的范数:

对于一个向量:=1,⋯,,通常定义:

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

 

“优化都不懂,你还想做机器学习?”

 

Lasso 方法与优化的稳定性:

左图:1+2的等高线有尖点,此处最优解中1=0。

右图:12+22的等高线是圆,此处最优解中1,2≠0,不具备稀疏性。

当线性条件(图中红色直线)由于噪音,产生微小变动时:

左图:最优解中1=0,较稳定。

右图:最优解中1,2同时改变,较为不稳定。

机器学习所需的数学基础,主要就是四大方面:微积分、线性代数、概率论、以及上文分享的优化。

大家如果对其他三方面感兴趣,可以在评论区留言“ML数学”,小七会发给大家可以免费听的课程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值