插入排序(Insertion Sort)是一种简单直观的排序算法。他的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
1、插入排序分析
2、python代码实现
"""插入排序"""
def insert_sort(alist):
n = len(alist)
# 从第二个位置开始,即下标0,到n-1
for i in range(1, n):
# i, i-1, i-2 ,..., 1
for j in range(i, 0, -1):
if alist[j] < alist[j-1]:
alist[j-1], alist[j] = alist[j], alist[j-1]
# 最优解,即 目标列表已经排好序
else:
break
解读:外层循环的范围为 从第二个数值到倒数第二个数值,内从循环的范围为 i, i-1, i -2, …, 1 ,当进入第一次循环时,将第二个位置上的数字与第一个位置进行比较,如果小于,将两者进行交换。当进入第二次循环时,第一个位置为已经排好序的数值,所以外层循环从第三个位置开始,内层循环 与前面排好序的数值挨个对比,然后插入到排好序的列表中正确的位置。
之前面试的时候,被要求使用一个for循环来完成对于列表的排序,所以在这提供另一种写法。
"""插入排序"""
def insert_sort(alist):
n = len(alist)
# 从第二个位置开始,即下标0,到n-1
for i in range(1, n):
# i, i-1, i-2 ,..., 1
j = i
while j > 0:
if alist[j] < alist[j-1]:
alist[j-1], alist[j] = alist[j], alist[j-1]
j -= 1
# 最优解,即 目标列表已经排好序
else:
break
l = [22, 44, 11, 22, 3, 14, 20]
print(l)
insert_sort(l)
print(l)
3、时间复杂度
- 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态,也就是每一次内层循环发现后面数值已经比前面大了,那么就认为该列表已经排序好了)
- 最坏时间复杂度:O(n2)
- 稳定性:稳定