conditional GAN

李宏毅老师的GAN课程笔记,深入讲解了ConditionalGAN的概念,包括有条件生成对抗网络的运作原理,以及如何通过特定输入得到特定输出。同时,介绍了UnsupervisedConditionalGAN的两种方法,一种适用于简单输入输出转换,另一种则用于复杂转换。特别提到了CycleGAN,这是一种著名的直接转换方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

李宏毅老师的GAN课程笔记

李宏毅老师的主页http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS18.html

Conditional GAN:

有条件的GAN,特定输入既有特定输出,如果输入与输出不匹配,则Discriminator的分数也很低。

Unsupervised Conditional GAN

方法一用于一些简单的输入输出接近的转换,方法二用于复杂的转换。

可以直接转换,也可以通过Encoder,decoder进行特征的提取与重构,其中第一种方法最著名的是Cycle GAN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值