使用 Helsinki-NLP 中英文翻译本地部署 - python 实现

        通过 Helsinki-NLP 本地部署中英文翻译功能。该开源模型性价比相对高,资源占用少,对于翻译要求不高的应用场景可以使用,比如单词,简单句式的中英文翻译。

该示例使用的模型下载地址:【免费】Helsinki-NLP中英文翻译本地部署-python实现模型资源-CSDN文库

模型也可以在hugging face 下载。

1、英文翻译为中文示例:

# -*- coding: utf-8 -*-
# date:2024
# Author: DataBall
# function:英文翻译为中文
import os
import cv2
os.environ['CUDA_VISIBLE_DEVICES'] = "0"

from transformers import pipeline, AutoModelWithLMHead, AutoTokenizer

# 英文翻译成中文
model = AutoModelWithLMHead.from_pretrained("Helsinki-NLP/opus-mt-en-zh",cache_dir = "./ckpt-fy",local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh",cache_dir = "./ckpt-fy",local_files_only=True)
translation = pipeline("translation_en_to_zh", model=model, tokenizer=tokenizer)

text = "Because of dreams, I will work hard."
translated_text = translation(text, max_length=256)[0]['translation_text']

print(" 原英文  : {}".format(text))
print(" 翻译中文: {}".format(translated_text))

对应的英文转中文log如下:

原英文  : Because of dreams, I will work hard.
翻译中文: 因为梦想,我会努力工作

2、中文翻译为英文示例:

# -*- coding: utf-8 -*-
# date:2024
# Author: DataBall
# function:中文翻译为英文
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline, AutoModelWithLMHead, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en",cache_dir = "./ckpt-fy",local_files_only=True)
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en",cache_dir = "./ckpt-fy",local_files_only=True)
translation = pipeline("translation_zh_to_en", model=model, tokenizer=tokenizer)
text = "因为梦想,我会努力工作。"
translated_text = translation(text, max_length=256)[0]['translation_text']

print(" 原中文  : {}".format(text))
print(" 翻译英文: {}".format(translated_text))

对应的中文转英文log如下:

原中文  : 因为梦想,我会努力工作。
翻译英文: Because of my dreams, I'll work hard.

 

助力快速掌握数据集的信息和使用方式。

### Fluent Meshing 外流场网格生成教程 在外流场仿真中,合理的网格划分对于获得精确可靠的计算结果至关重要。为了提高仿真的准确性并减少计算时间,在外流场环境中应用合适的网格策略非常重要[^1]。 #### 创建新项目 启动 ANSYS Workbench 后,通过双击主界面 Toolbox (工具箱) 中的 Analysis Systems → Fluid Flow (Fluent),可以在项目管理区创建一个新的分析项目 A[^4]。 #### 导入几何模型 进入 FLUENT Meshing 模块后,首先导入待研究对象的 CAD 几何文件。确保该文件格式兼容(如 STEP, IGES 或 STL),并且已经过预处理去除不必要的细节特征以简化后续操作过程。 #### 设置全局参数 定义整体域大小时需考虑足够的空间包围物体周围以及远场边界条件的位置设定;同时指定初始单元尺度控制全局密度分布情况,特别是在靠近壁面处应适当加密以捕捉近壁效应特性[^2]。 #### 局部尺寸调整 针对特定区域比如尖锐边缘、曲率较大部位或是预计存在剧烈变化的地方实施局部细化措施。利用 Edge Sizing 和 Face/Body Sizing 功能实现对这些敏感位置更精细地描述,从而更好地反映实际物理现象的发生机制。 #### 自动化网格生成流程 完成上述准备工作之后,可以选择适合当前案例需求的一种自动化方法来自动生成高质量结构化或多边形混合型网格体系。例如采用 Watertight Geometry 方式能够有效解决复杂外形带来的挑战,并自动识别内部封闭腔室与外部开放环境之间的关系[^3]。 #### 执行平滑优化及质量检查 初步构建完成后,执行 `fluent.tui.mesh.smooth.smooth("all", "laplacian", 10)` 命令来进行全范围内的拉普拉斯平滑迭代改进节点布局合理性;随后再次调用 `fluent.tui.mesh.check.check("all")` 来全面评估现有拓扑结构是否满足既定标准要求,必要时重复此步骤直至达到最佳状态为止。 ```python # 应用网格平滑 fluent.tui.mesh.smooth.smooth("all", "laplacian", 10) # 再次检查网格质量 fluent.tui.mesh.check.check("all") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值