Matplotlib | 高阶绘图案例【1】

大家好,我是 👉【Python当打之年(点击跳转)】

本期是 Matplotlib高阶绘图案例系列 的第一期,核心是楔形图 Matplotlib系列和Pyecharts系列都会不间断更新,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

先看看效果:

在这里插入图片描述

🏳️‍🌈 1. 绘制图布,设置坐标范围

fig, ax = plt.subplots(1, 1,figsize=(4,4))
ax.set_xlim(0,26)
ax.set_ylim(0,26)

在这里插入图片描述

🏳️‍🌈 2. 绘制圆角矩形

可以看到图上是有6个相同部分组成的,所以只要画出一个,其他复制就可以了:

fig, ax = plt.subplots(1, 1,figsize=(8,8),dpi=100)
ax.set_xlim(0,26)
ax.set_ylim(0,26)
# 圆心/半径
center_x,center_y,r = 2,15,0.8
# 宽/高/数量
wide,high,num = 2,4,500
pgon = plt.Polygon(get_cir_rect(center_x,center_y,r,wide,high,num))
ax.add_patch(pgon)

在这里插入图片描述

循环绘制其余的几个矩形:

for idx,value in enumerate(range(2,24,4)):
    pgon = plt.Polygon(get_cir_rect(value,center_y,r,wide,high,num))
    ax.add_patch(pgon)

在这里插入图片描述

🏳️‍🌈 3. 添加水滴

wed = Wedge((value+wide/2,center_y-r-high),0.5,0,360,color='w',width=0.5)
wed1 = Wedge((value+wide/2,center_y-r-high),0.4,0,360,width=0.15)
pgon1 = plt.Polygon(([value+wide/2-0.3,center_y-r-high-0.25],[value+wide/2+0.32,center_y-r-high-0.25],[value+wide/2+0.01,center_y-r-high-0.6]))
ax.add_patch(wed)
ax.add_patch(pgon1)
ax.add_patch(wed1)

在这里插入图片描述

🏳️‍🌈 4. 添加时间线

line = Rectangle((1,ys[0]),24,0.06,color='#757575')
ax.add_patch(line)
ax.plot(xs,ys,marker='o', markerfacecolor='white',color='#757575',markeredgewidth=2,markeredgecolor='#757575')
ax.arrow(xs[-1],ys[0],2,0,width=0.06,head_starts_at_zero=True,color='#757575')

在这里插入图片描述

🏳️‍🌈 5. 添加文本、配色

colors = ['#FEE8DD','#F5E9D9','#FADCDD','#FEF2DD','#ECE2E2','#F8E6E0']
colors_t = ['#B71C1C','#6D4C41','#931D21','#E1A400','#6D4C41','#FF7900']
texts = ['手工操作','单道\n批处理\n系统','多道\n批处理\n系统','分时\n操作系统','实时\n操作系统','现代\n操作系统']
years = ['1940S','1950S','1960S','1970S','1970S','1970S']

ax.text(value+wide/2,center_y-high/2,texts[idx],verticalalignment='center',horizontalalignment='center',fontsize=12,color=colors_t[idx], fontweight='bold')
ax.text(value+wide/2,center_y-high/2-5,years[idx],horizontalalignment='center',fontsize=12, fontweight='bold')
ax.text(13,17.2,'操作系统的早期发展过程',horizontalalignment='center',fontsize=16, fontweight='bold')

在这里插入图片描述

🏳️‍🌈 6. 可视化项目源码+数据

点击跳转:【全部可视化项目源码+数据】


以上就是本期为大家整理的全部内容了,赶快练习起来吧,原创不易,喜欢的朋友可以点赞、收藏也可以分享注明出处)让更多人知道。

Pythonmatplotlib库是一个用于数据可视化高阶库。它由多个子库组成,其中matplotlib.pyplot是其中一个子库,主要用于实现各种数据展示图形的绘制。使用matplotlib.pyplot库可以轻松地创建各种图表,包括线图、散点图、柱状图、饼图等。 下面是一个例子,展示了如何使用matplotlib.pyplot库创建一个带有标签的坐标系: ```python import numpy as np import matplotlib.pyplot as plt import matplotlib # 设置中文显示 matplotlib.rcParams['font.family'] = 'SimHei' matplotlib.rcParams['font.sans-serif'] = ['SimHei'] # 绘制坐标系 plt.plot([1, 2, 6], [1, 2, 1]) plt.title("坐标系") plt.xlabel('时间(单位)') plt.ylabel('范围(单位)') plt.xticks([1,2,3,4,5],[r'$\pi/3$',r'$2\pi/3$',r'$\pi/$',r'$4\pi/3$',r'$5\pi/3$']) plt.show() ``` 这段代码使用了numpy库生成了一些示例数据,并使用matplotlib.pyplot库将这些数据绘制成了一个带有标签的坐标系。通过设置标题、x轴标签、y轴标签和刻度标签,可以更好地展示数据。最后使用`plt.show()`函数显示图形。 总之,Pythonmatplotlib库提供了丰富的功能和灵活的接口,使得数据可视化变得简单而强大。无论是简单的图形还是复杂的图表,matplotlib都能够满足你的需求。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Python -- Matplotlib库的使用](https://blog.csdn.net/weixin_45627039/article/details/124273594)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python当打之年

您的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值