论文解读(CVPR-2024) FinePOSE: Fine-Grained Prompt-Driven 3D Human Pose Estimation via Diffusion Models

论文《A Dual-Augmentor Framework for Domain Generalization in 3D Human Pose Estimation》发表于2024年的计算机视觉与模式识别会议(CVPR)上,提出了一种新颖的框架,旨在通过使用两个姿势增强器和元优化来提高3D人体姿态估计中的域泛化能力。该框架在多个基准数据集上表现优于现有方法,并且可以在www.x-mol.net上找到其实现。
具体来说,该框架包含两个姿势增强器:弱增强器和强增强器。通过这种设计,框架能够更好地应对不同域中的数据变化,从而提升模型在未见过的域中的泛化能力。此外,该研究还指出,传统的域泛化方法通常利用对抗训练生成合成姿势进行训练,而本文提出的框架则通过引入双增强器和元优化来实现更有效的泛化。
这项研究对于在多样化环境条件下部署人体姿态估计系统具有重要意义,因为这些系统需要在不同的数据源和环境条件下保持良好的性能。

最低0.47元/天 解锁文章
12万+

被折叠的 条评论
为什么被折叠?



