CVPR-2024 扩散模型(Diffusion Model)相关论文 PART2(72篇)

CVPR-2024 扩散模型(Diffusion Model)相关论文 PART2(72篇)

在这里插入图片描述

Predicated Diffusion: Predicate Logic-Based Attention Guidance for Text-to-Image Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/847f6a4bf6

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Sueyoshi_Predicated_Diffusion_Predicate_Logic-Based_Attention_Guidance_for_Text-to-Image_Diffusion_Models_CVPR_2024_paper.html)

SwiftBrush: One-Step Text-to-Image Diffusion Model with Variational Score Distillation

文章解读: http://www.studyai.com/xueshu/paper/detail/8958891af9

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Nguyen_SwiftBrush_One-Step_Text-to-Image_Diffusion_Model_with_Variational_Score_Distillation_CVPR_2024_paper.html)

Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/8cb636d645

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Yang_Gaussian_Shading_Provable_Performance-Lossless_Image_Watermarking_for_Diffusion_Models_CVPR_2024_paper.html)

One-dimensional Adapter to Rule Them All: Concepts Diffusion Models and Erasing Applications

文章解读: http://www.studyai.com/xueshu/paper/detail/8e7d79c3de

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Lyu_One-dimensional_Adapter_to_Rule_Them_All_Concepts_Diffusion_Models_and_CVPR_2024_paper.html)

UV-IDM: Identity-Conditioned Latent Diffusion Model for Face UV-Texture Generation

文章解读: http://www.studyai.com/xueshu/paper/detail/8f0e908c22

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Li_UV-IDM_Identity-Conditioned_Latent_Diffusion_Model_for_Face_UV-Texture_Generation_CVPR_2024_paper.html)

PointInfinity: Resolution-Invariant Point Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/8fba7e6acc

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Huang_PointInfinity_Resolution-Invariant_Point_Diffusion_Models_CVPR_2024_paper.html)

CAT-DM: Controllable Accelerated Virtual Try-on with Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/953750a365

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zeng_CAT-DM_Controllable_Accelerated_Virtual_Try-on_with_Diffusion_Model_CVPR_2024_paper.html)

SingularTrajectory: Universal Trajectory Predictor Using Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/96dcf65c67

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Bae_SingularTrajectory_Universal_Trajectory_Predictor_Using_Diffusion_Model_CVPR_2024_paper.html)

Diffusion Model Alignment Using Direct Preference Optimization

文章解读: http://www.studyai.com/xueshu/paper/detail/980801801e

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Wallace_Diffusion_Model_Alignment_Using_Direct_Preference_Optimization_CVPR_2024_paper.html)

MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/9d8f58e5e2

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Chowdhury_MeLFusion_Synthesizing_Music_from_Image_and_Language_Cues_using_Diffusion_CVPR_2024_paper.html)

DiffusionTrack: Point Set Diffusion Model for Visual Object Tracking

文章解读: http://www.studyai.com/xueshu/paper/detail/9f85d99a83

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Xie_DiffusionTrack_Point_Set_Diffusion_Model_for_Visual_Object_Tracking_CVPR_2024_paper.html)

CommonCanvas: Open Diffusion Models Trained on Creative-Commons Images

文章解读: http://www.studyai.com/xueshu/paper/detail/a047cae656

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Gokaslan_CommonCanvas_Open_Diffusion_Models_Trained_on_Creative-Commons_Images_CVPR_2024_paper.html)

Open-Vocabulary Attention Maps with Token Optimization for Semantic Segmentation in Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/a05790bdd5

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Marcos-Manchon_Open-Vocabulary_Attention_Maps_with_Token_Optimization_for_Semantic_Segmentation_in_CVPR_2024_paper.html)

X-Adapter: Adding Universal Compatibility of Plugins for Upgraded Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/a5b7597b13

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Ran_X-Adapter_Adding_Universal_Compatibility_of_Plugins_for_Upgraded_Diffusion_Model_CVPR_2024_paper.html)

MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/a649a72a30

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Xu_MagicAnimate_Temporally_Consistent_Human_Image_Animation_using_Diffusion_Model_CVPR_2024_paper.html)

ACT-Diffusion: Efficient Adversarial Consistency Training for One-step Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/a820c0c490

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Kong_ACT-Diffusion_Efficient_Adversarial_Consistency_Training_for_One-step_Diffusion_Models_CVPR_2024_paper.html)

Fast ODE-based Sampling for Diffusion Models in Around 5 Steps

文章解读: http://www.studyai.com/xueshu/paper/detail/a8898c8991

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhou_Fast_ODE-based_Sampling_for_Diffusion_Models_in_Around_5_Steps_CVPR_2024_paper.html)

Towards Realistic Scene Generation with LiDAR Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/a9f554cd09

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Ran_Towards_Realistic_Scene_Generation_with_LiDAR_Diffusion_Models_CVPR_2024_paper.html)

Perturbing Attention Gives You More Bang for the Buck: Subtle Imaging Perturbations That Efficiently Fool Customized Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/ab33278f56

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Xu_Perturbing_Attention_Gives_You_More_Bang_for_the_Buck_Subtle_CVPR_2024_paper.html)

TRIP: Temporal Residual Learning with Image Noise Prior for Image-to-Video Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/acc30eea81

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_TRIP_Temporal_Residual_Learning_with_Image_Noise_Prior_for_Image-to-Video_CVPR_2024_paper.html)

Self-correcting LLM-controlled Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/ace6d01d02

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Wu_Self-correcting_LLM-controlled_Diffusion_Models_CVPR_2024_paper.html)

Selective Hourglass Mapping for Universal Image Restoration Based on Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/ae5502f983

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zheng_Selective_Hourglass_Mapping_for_Universal_Image_Restoration_Based_on_Diffusion_CVPR_2024_paper.html)

Relation Rectification in Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/aeede3634c

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Wu_Relation_Rectification_in_Diffusion_Model_CVPR_2024_paper.html)

Orthogonal Adaptation for Modular Customization of Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/afe14afe26

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Po_Orthogonal_Adaptation_for_Modular_Customization_of_Diffusion_Models_CVPR_2024_paper.html)

Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting

文章解读: http://www.studyai.com/xueshu/paper/detail/b375472435

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Liu_Structure_Matters_Tackling_the_Semantic_Discrepancy_in_Diffusion_Models_for_CVPR_2024_paper.html)

Generate Like Experts: Multi-Stage Font Generation by Incorporating Font Transfer Process into Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/b619876537

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Fu_Generate_Like_Experts_Multi-Stage_Font_Generation_by_Incorporating_Font_Transfer_CVPR_2024_paper.html)

DiffMorpher: Unleashing the Capability of Diffusion Models for Image Morphing

文章解读: http://www.studyai.com/xueshu/paper/detail/b62634935e

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_DiffMorpher_Unleashing_the_Capability_of_Diffusion_Models_for_Image_Morphing_CVPR_2024_paper.html)

Texture-Preserving Diffusion Models for High-Fidelity Virtual Try-On

文章解读: http://www.studyai.com/xueshu/paper/detail/ba01ef0c24

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Yang_Texture-Preserving_Diffusion_Models_for_High-Fidelity_Virtual_Try-On_CVPR_2024_paper.html)

DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations

文章解读: http://www.studyai.com/xueshu/paper/detail/bab68ca531

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Qi_DEADiff_An_Efficient_Stylization_Diffusion_Model_with_Disentangled_Representations_CVPR_2024_paper.html)

FinePOSE: Fine-Grained Prompt-Driven 3D Human Pose Estimation via Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/baeda7808b

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Xu_FinePOSE_Fine-Grained_Prompt-Driven_3D_Human_Pose_Estimation_via_Diffusion_Models_CVPR_2024_paper.html)

DeepCache: Accelerating Diffusion Models for Free

文章解读: http://www.studyai.com/xueshu/paper/detail/bb56f8ae9c

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Ma_DeepCache_Accelerating_Diffusion_Models_for_Free_CVPR_2024_paper.html)

EasyDrag: Efficient Point-based Manipulation on Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/bc4a3aef09

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Hou_EasyDrag_Efficient_Point-based_Manipulation_on_Diffusion_Models_CVPR_2024_paper.html)

Attention-Driven Training-Free Efficiency Enhancement of Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/c05b9cdf43

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Wang_Attention-Driven_Training-Free_Efficiency_Enhancement_of_Diffusion_Models_CVPR_2024_paper.html)

Unsupervised Keypoints from Pretrained Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/c179a03619

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Hedlin_Unsupervised_Keypoints_from_Pretrained_Diffusion_Models_CVPR_2024_paper.html)

Co-Speech Gesture Video Generation via Motion-Decoupled Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/c2c282b646

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/He_Co-Speech_Gesture_Video_Generation_via_Motion-Decoupled_Diffusion_Model_CVPR_2024_paper.html)

It’s All About Your Sketch: Democratising Sketch Control in Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/c388e58e5a

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Koley_Its_All_About_Your_Sketch_Democratising_Sketch_Control_in_Diffusion_CVPR_2024_paper.html)

RAVE: Randomized Noise Shuffling for Fast and Consistent Video Editing with Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/c4010e2e3c

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Kara_RAVE_Randomized_Noise_Shuffling_for_Fast_and_Consistent_Video_Editing_CVPR_2024_paper.html)

Intriguing Properties of Diffusion Models: An Empirical Study of the Natural Attack Capability in Text-to-Image Generative Models

文章解读: http://www.studyai.com/xueshu/paper/detail/c40bdadc3a

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Sato_Intriguing_Properties_of_Diffusion_Models_An_Empirical_Study_of_the_CVPR_2024_paper.html)

Generative Rendering: Controllable 4D-Guided Video Generation with 2D Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/c855174eb6

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Cai_Generative_Rendering_Controllable_4D-Guided_Video_Generation_with_2D_Diffusion_Models_CVPR_2024_paper.html)

ViVid-1-to-3: Novel View Synthesis with Video Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/c964dc7b58

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Kwak_ViVid-1-to-3_Novel_View_Synthesis_with_Video_Diffusion_Models_CVPR_2024_paper.html)

UltrAvatar: A Realistic Animatable 3D Avatar Diffusion Model with Authenticity Guided Textures

文章解读: http://www.studyai.com/xueshu/paper/detail/c99670eab0

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhou_UltrAvatar_A_Realistic_Animatable_3D_Avatar_Diffusion_Model_with_Authenticity_CVPR_2024_paper.html)

Zero-Shot Structure-Preserving Diffusion Model for High Dynamic Range Tone Mapping

文章解读: http://www.studyai.com/xueshu/paper/detail/ce498b98a2

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhu_Zero-Shot_Structure-Preserving_Diffusion_Model_for_High_Dynamic_Range_Tone_Mapping_CVPR_2024_paper.html)

TI2V-Zero: Zero-Shot Image Conditioning for Text-to-Video Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/d14873a6d2

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Ni_TI2V-Zero_Zero-Shot_Image_Conditioning_for_Text-to-Video_Diffusion_Models_CVPR_2024_paper.html)

Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/d287475ef4

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Ling_Align_Your_Gaussians_Text-to-4D_with_Dynamic_3D_Gaussians_and_Composed_CVPR_2024_paper.html)

Balancing Act: Distribution-Guided Debiasing in Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/d2aef0db4d

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Parihar_Balancing_Act_Distribution-Guided_Debiasing_in_Diffusion_Models_CVPR_2024_paper.html)

LeftRefill: Filling Right Canvas based on Left Reference through Generalized Text-to-Image Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/d7fde4c78f

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Cao_LeftRefill_Filling_Right_Canvas_based_on_Left_Reference_through_Generalized_CVPR_2024_paper.html)

Scaling Diffusion Models to Real-World 3D LiDAR Scene Completion

文章解读: http://www.studyai.com/xueshu/paper/detail/d94bde37d9

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Nunes_Scaling_Diffusion_Models_to_Real-World_3D_LiDAR_Scene_Completion_CVPR_2024_paper.html)

MonoDiff: Monocular 3D Object Detection and Pose Estimation with Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/d95fc5377d

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Ranasinghe_MonoDiff_Monocular_3D_Object_Detection_and_Pose_Estimation_with_Diffusion_CVPR_2024_paper.html)

Tackling the Singularities at the Endpoints of Time Intervals in Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/dc560074a6

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Tackling_the_Singularities_at_the_Endpoints_of_Time_Intervals_in_CVPR_2024_paper.html)

Watermark-embedded Adversarial Examples for Copyright Protection against Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/dd09e10d49

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhu_Watermark-embedded_Adversarial_Examples_for_Copyright_Protection_against_Diffusion_Models_CVPR_2024_paper.html)

PRDP: Proximal Reward Difference Prediction for Large-Scale Reward Finetuning of Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/df3907af23

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Deng_PRDP_Proximal_Reward_Difference_Prediction_for_Large-Scale_Reward_Finetuning_of_CVPR_2024_paper.html)

Arbitrary Motion Style Transfer with Multi-condition Motion Latent Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/df54e5c3ee

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Song_Arbitrary_Motion_Style_Transfer_with_Multi-condition_Motion_Latent_Diffusion_Model_CVPR_2024_paper.html)

Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/dfec9eea6f

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Wang_Enhance_Image_Classification_via_Inter-Class_Image_Mixup_with_Diffusion_Model_CVPR_2024_paper.html)

Visual Layout Composer: Image-Vector Dual Diffusion Model for Design Layout Generation

文章解读: http://www.studyai.com/xueshu/paper/detail/e23659b072

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Shabani_Visual_Layout_Composer_Image-Vector_Dual_Diffusion_Model_for_Design_Layout_CVPR_2024_paper.html)

InitNO: Boosting Text-to-Image Diffusion Models via Initial Noise Optimization

文章解读: http://www.studyai.com/xueshu/paper/detail/e291906581

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Guo_InitNO_Boosting_Text-to-Image_Diffusion_Models_via_Initial_Noise_Optimization_CVPR_2024_paper.html)

Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder

文章解读: http://www.studyai.com/xueshu/paper/detail/e41d89ceb2

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Kim_Arbitrary-Scale_Image_Generation_and_Upsampling_using_Latent_Diffusion_Model_and_CVPR_2024_paper.html)

Visual Anagrams: Generating Multi-View Optical Illusions with Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/e48feb2654

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Geng_Visual_Anagrams_Generating_Multi-View_Optical_Illusions_with_Diffusion_Models_CVPR_2024_paper.html)

JeDi: Joint-Image Diffusion Models for Finetuning-Free Personalized Text-to-Image Generation

文章解读: http://www.studyai.com/xueshu/paper/detail/e55621af58

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zeng_JeDi_Joint-Image_Diffusion_Models_for_Finetuning-Free_Personalized_Text-to-Image_Generation_CVPR_2024_paper.html)

GaussianDreamer: Fast Generation from Text to 3D Gaussians by Bridging 2D and 3D Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/e5ac549b9b

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Yi_GaussianDreamer_Fast_Generation_from_Text_to_3D_Gaussians_by_Bridging_CVPR_2024_paper.html)

Learned Representation-Guided Diffusion Models for Large-Image Generation

文章解读: http://www.studyai.com/xueshu/paper/detail/e5d225703e

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Graikos_Learned_Representation-Guided_Diffusion_Models_for_Large-Image_Generation_CVPR_2024_paper.html)

Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World Video Super-Resolution

文章解读: http://www.studyai.com/xueshu/paper/detail/e905f32c26

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhou_Upscale-A-Video_Temporal-Consistent_Diffusion_Model_for_Real-World_Video_Super-Resolution_CVPR_2024_paper.html)

Single Mesh Diffusion Models with Field Latents for Texture Generation

文章解读: http://www.studyai.com/xueshu/paper/detail/ecabe0becb

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Mitchel_Single_Mesh_Diffusion_Models_with_Field_Latents_for_Texture_Generation_CVPR_2024_paper.html)

CDFormer: When Degradation Prediction Embraces Diffusion Model for Blind Image Super-Resolution

文章解读: http://www.studyai.com/xueshu/paper/detail/eeb6c71993

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Liu_CDFormer_When_Degradation_Prediction_Embraces_Diffusion_Model_for_Blind_Image_CVPR_2024_paper.html)

Diff-BGM: A Diffusion Model for Video Background Music Generation

文章解读: http://www.studyai.com/xueshu/paper/detail/f37f29cca7

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Li_Diff-BGM_A_Diffusion_Model_for_Video_Background_Music_Generation_CVPR_2024_paper.html)

SD4Match: Learning to Prompt Stable Diffusion Model for Semantic Matching

文章解读: http://www.studyai.com/xueshu/paper/detail/f521dad37a

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Li_SD4Match_Learning_to_Prompt_Stable_Diffusion_Model_for_Semantic_Matching_CVPR_2024_paper.html)

Residual Learning in Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/f5900b600f

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Residual_Learning_in_Diffusion_Models_CVPR_2024_paper.html)

Image Restoration by Denoising Diffusion Models with Iteratively Preconditioned Guidance

文章解读: http://www.studyai.com/xueshu/paper/detail/f643206784

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Garber_Image_Restoration_by_Denoising_Diffusion_Models_with_Iteratively_Preconditioned_Guidance_CVPR_2024_paper.html)

RecDiffusion: Rectangling for Image Stitching with Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/f67ddd03f8

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhou_RecDiffusion_Rectangling_for_Image_Stitching_with_Diffusion_Models_CVPR_2024_paper.html)

Diffusion Models Without Attention

文章解读: http://www.studyai.com/xueshu/paper/detail/f8dc6cdb47

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Yan_Diffusion_Models_Without_Attention_CVPR_2024_paper.html)

Distilling ODE Solvers of Diffusion Models into Smaller Steps

文章解读: http://www.studyai.com/xueshu/paper/detail/fa5247fd48

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Kim_Distilling_ODE_Solvers_of_Diffusion_Models_into_Smaller_Steps_CVPR_2024_paper.html)

Structure-Guided Adversarial Training of Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/fb592a54e2

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Yang_Structure-Guided_Adversarial_Training_of_Diffusion_Models_CVPR_2024_paper.html)

AVID: Any-Length Video Inpainting with Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/fdfdf01a45

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_AVID_Any-Length_Video_Inpainting_with_Diffusion_Model_CVPR_2024_paper.html)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值