CVPR-2024 扩散模型(Diffusion Model)相关论文 PART2(72篇)
Predicated Diffusion: Predicate Logic-Based Attention Guidance for Text-to-Image Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/847f6a4bf6
SwiftBrush: One-Step Text-to-Image Diffusion Model with Variational Score Distillation
文章解读: http://www.studyai.com/xueshu/paper/detail/8958891af9
Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/8cb636d645
One-dimensional Adapter to Rule Them All: Concepts Diffusion Models and Erasing Applications
文章解读: http://www.studyai.com/xueshu/paper/detail/8e7d79c3de
UV-IDM: Identity-Conditioned Latent Diffusion Model for Face UV-Texture Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/8f0e908c22
PointInfinity: Resolution-Invariant Point Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/8fba7e6acc
CAT-DM: Controllable Accelerated Virtual Try-on with Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/953750a365
SingularTrajectory: Universal Trajectory Predictor Using Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/96dcf65c67
Diffusion Model Alignment Using Direct Preference Optimization
文章解读: http://www.studyai.com/xueshu/paper/detail/980801801e
MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/9d8f58e5e2
DiffusionTrack: Point Set Diffusion Model for Visual Object Tracking
文章解读: http://www.studyai.com/xueshu/paper/detail/9f85d99a83
CommonCanvas: Open Diffusion Models Trained on Creative-Commons Images
文章解读: http://www.studyai.com/xueshu/paper/detail/a047cae656
Open-Vocabulary Attention Maps with Token Optimization for Semantic Segmentation in Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/a05790bdd5
X-Adapter: Adding Universal Compatibility of Plugins for Upgraded Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/a5b7597b13
MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/a649a72a30
ACT-Diffusion: Efficient Adversarial Consistency Training for One-step Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/a820c0c490
Fast ODE-based Sampling for Diffusion Models in Around 5 Steps
文章解读: http://www.studyai.com/xueshu/paper/detail/a8898c8991
Towards Realistic Scene Generation with LiDAR Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/a9f554cd09
Perturbing Attention Gives You More Bang for the Buck: Subtle Imaging Perturbations That Efficiently Fool Customized Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/ab33278f56
TRIP: Temporal Residual Learning with Image Noise Prior for Image-to-Video Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/acc30eea81
Self-correcting LLM-controlled Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/ace6d01d02
Selective Hourglass Mapping for Universal Image Restoration Based on Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/ae5502f983
Relation Rectification in Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/aeede3634c
Orthogonal Adaptation for Modular Customization of Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/afe14afe26
Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting
文章解读: http://www.studyai.com/xueshu/paper/detail/b375472435
Generate Like Experts: Multi-Stage Font Generation by Incorporating Font Transfer Process into Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/b619876537
DiffMorpher: Unleashing the Capability of Diffusion Models for Image Morphing
文章解读: http://www.studyai.com/xueshu/paper/detail/b62634935e
Texture-Preserving Diffusion Models for High-Fidelity Virtual Try-On
文章解读: http://www.studyai.com/xueshu/paper/detail/ba01ef0c24
DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations
文章解读: http://www.studyai.com/xueshu/paper/detail/bab68ca531
FinePOSE: Fine-Grained Prompt-Driven 3D Human Pose Estimation via Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/baeda7808b
DeepCache: Accelerating Diffusion Models for Free
文章解读: http://www.studyai.com/xueshu/paper/detail/bb56f8ae9c
EasyDrag: Efficient Point-based Manipulation on Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/bc4a3aef09
Attention-Driven Training-Free Efficiency Enhancement of Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/c05b9cdf43
Unsupervised Keypoints from Pretrained Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/c179a03619
Co-Speech Gesture Video Generation via Motion-Decoupled Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/c2c282b646
It’s All About Your Sketch: Democratising Sketch Control in Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/c388e58e5a
RAVE: Randomized Noise Shuffling for Fast and Consistent Video Editing with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/c4010e2e3c
Intriguing Properties of Diffusion Models: An Empirical Study of the Natural Attack Capability in Text-to-Image Generative Models
文章解读: http://www.studyai.com/xueshu/paper/detail/c40bdadc3a
Generative Rendering: Controllable 4D-Guided Video Generation with 2D Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/c855174eb6
ViVid-1-to-3: Novel View Synthesis with Video Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/c964dc7b58
UltrAvatar: A Realistic Animatable 3D Avatar Diffusion Model with Authenticity Guided Textures
文章解读: http://www.studyai.com/xueshu/paper/detail/c99670eab0
Zero-Shot Structure-Preserving Diffusion Model for High Dynamic Range Tone Mapping
文章解读: http://www.studyai.com/xueshu/paper/detail/ce498b98a2
TI2V-Zero: Zero-Shot Image Conditioning for Text-to-Video Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/d14873a6d2
Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/d287475ef4
Balancing Act: Distribution-Guided Debiasing in Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/d2aef0db4d
LeftRefill: Filling Right Canvas based on Left Reference through Generalized Text-to-Image Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/d7fde4c78f
Scaling Diffusion Models to Real-World 3D LiDAR Scene Completion
文章解读: http://www.studyai.com/xueshu/paper/detail/d94bde37d9
MonoDiff: Monocular 3D Object Detection and Pose Estimation with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/d95fc5377d
Tackling the Singularities at the Endpoints of Time Intervals in Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/dc560074a6
Watermark-embedded Adversarial Examples for Copyright Protection against Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/dd09e10d49
PRDP: Proximal Reward Difference Prediction for Large-Scale Reward Finetuning of Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/df3907af23
Arbitrary Motion Style Transfer with Multi-condition Motion Latent Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/df54e5c3ee
Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/dfec9eea6f
Visual Layout Composer: Image-Vector Dual Diffusion Model for Design Layout Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/e23659b072
InitNO: Boosting Text-to-Image Diffusion Models via Initial Noise Optimization
文章解读: http://www.studyai.com/xueshu/paper/detail/e291906581
Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder
文章解读: http://www.studyai.com/xueshu/paper/detail/e41d89ceb2
Visual Anagrams: Generating Multi-View Optical Illusions with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/e48feb2654
JeDi: Joint-Image Diffusion Models for Finetuning-Free Personalized Text-to-Image Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/e55621af58
GaussianDreamer: Fast Generation from Text to 3D Gaussians by Bridging 2D and 3D Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/e5ac549b9b
Learned Representation-Guided Diffusion Models for Large-Image Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/e5d225703e
Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World Video Super-Resolution
文章解读: http://www.studyai.com/xueshu/paper/detail/e905f32c26
Single Mesh Diffusion Models with Field Latents for Texture Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/ecabe0becb
CDFormer: When Degradation Prediction Embraces Diffusion Model for Blind Image Super-Resolution
文章解读: http://www.studyai.com/xueshu/paper/detail/eeb6c71993
Diff-BGM: A Diffusion Model for Video Background Music Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/f37f29cca7
SD4Match: Learning to Prompt Stable Diffusion Model for Semantic Matching
文章解读: http://www.studyai.com/xueshu/paper/detail/f521dad37a
Residual Learning in Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/f5900b600f
Image Restoration by Denoising Diffusion Models with Iteratively Preconditioned Guidance
文章解读: http://www.studyai.com/xueshu/paper/detail/f643206784
RecDiffusion: Rectangling for Image Stitching with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/f67ddd03f8
Diffusion Models Without Attention
文章解读: http://www.studyai.com/xueshu/paper/detail/f8dc6cdb47
Distilling ODE Solvers of Diffusion Models into Smaller Steps
文章解读: http://www.studyai.com/xueshu/paper/detail/fa5247fd48
Structure-Guided Adversarial Training of Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/fb592a54e2