AI写作|拆解小红书对标账号 只需简单手搓一个coze智能体(提示词+方法)

本文背景

我们都知道,要想在小红书上面搞到米,爆款笔记必不可少,平时我们也看过不少的关于如何制作爆款笔记的各种教程,但是抵不住太多太复杂,于是有没有一种办法能将这个工作交给AI来执行呢?

爆款笔记会涉及多方面的原因,包括:

  • 账号权重
  • 账号垂直度
  • 笔记封面
  • 笔记选题
### 如何从头构建或复刻智能体 #### 创建基础环境 为了建立一个AI智能体,准备适当的基础环境至关重要。这涉及到安装必要的软件包和库,例如Python及其扩展库如NumPy、Pandas等,对于更复杂的项目可能还需要框架如TensorFlow或PyTorch。具体到Scratch环境中,则需考虑其内置功能和支持的语言特性[^3]。 #### 定义智能体的目与行为模式 明确智能体的任务目是首要任务之一。之后应设计该实体如何感知周围世界的信息输入机制;接着定义处理这些信息的方式——即决策逻辑;最后决定行动方案以响应外界刺激。此过程可以借鉴自动代理学习的研究成果,在无需预先编程的情况下通过自我规划达成特定目的[^2]。 #### 实现基本的学习能力 为了让智能体具备一定的适应性和灵活性,引入机器学习技术十分必要。可以从简单的线性回归模型起步,逐步过渡至更为复杂的人工神经网络结构。在此过程中,了解权重优化方法论以及评估指的选择同样重要[^4]。 ```python import numpy as np class SimpleAgent: def __init__(self, learning_rate=0.01): self.weights = None self.learning_rate = learning_rate def predict(self, X): return np.dot(X, self.weights) def fit(self, X_train, y_train, epochs=100): n_features = X_train.shape[1] self.weights = np.zeros(n_features) for epoch in range(epochs): predictions = self.predict(X_train) error = y_train - predictions gradient = -(2/len(y_train)) * np.dot(error.T, X_train) self.weights -= self.learning_rate * gradient return self ``` 上述代码展示了最简单形式下的监督式学习流程:初始化参数向量`weights`; 对给定训练样本执行前馈运算得到预测值; 计算实际输出与预期之间的差异作为误差项; 更新权值直至收敛为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值