最新扣子(Coze)实战案例:如何才能用知识库搭建出完美的智能客服,手把手教学,完全免费教程

本节课目标:搭建一个工作流,使用上一节课创建的的「汽车行业知识库」来回答用户的问题,做一个智能客服

一、搭建工作流

1、新建工作流

创建一个工作流,用来搭建在线问答客服的整体流程~

2、开始节点

无需额外的参数输入,系统将直接从用户的聊天输入框中提取对话内容。这种方式简化了交互流程,使得用户可以更加便捷地与系统进行交流。

3、添加知识库节点

从左侧的知识库节点击加号,把知识库放入到面板中。

4、配置知识库节点

(1) 配置输入

Query是一个查询语句,我们这里引用的是开始节点传递过来的值。知识库会根据这个Query召回最匹配的信息。

注:这里的召回指的是从你选定的知识库中检索符合条件的信息并返回。

(2) 添加知识库

点击知识库旁边的加号按钮,就可以添加我们在上一节中创建好的「汽车行业知识库」了。

(3) 搜索策略解释

📌敲黑板:这里的搜索策略很重要,我们重点讲解一下。

A、语义

语义:像人类一样去理解词与词,句与句之间的关系。推荐在需要理解语义关联度和跨语言查询的场景使用。例如下面两组句子,第一组的语义关系就更强。

"狼追小羊""豺狼追山羊"``"狼追小羊""我爱吃炸猪排"

B、全文

基于关键词进行全文检索。推荐当查询内容包含以下场景时使用特定名称或专有名词,术语等,例如马斯克、 特斯拉 Model Y等缩写词。

C、混合

结合全文检索和语义检索的优势,并对结果进行综合排序召回相关的内容片段。

(4) 最大召回数量

选择从检索结果中返回多少个内容片段给大模型使用。数值越大,返回的内容片段就越多。这里如果想精确匹配,可以设置得小一些。如果希望内容全面,可以设置得大一些。

(5) 最小匹配度

根据设置的匹配度选取要返回给大模型的内容片段。低于设定匹配度的内容不会被返回。该配置会滤掉一些低相关度的搜索结果。

5、大模型节点

其实到上面的步骤,我们知识库检索就可以完成了。有的同学可能会问,为什么还要连接一个大模型的节点呢。这是因为知识库检索的都是内容的片段,如果我们想让内容更加符合自然语言的聊天对话形式,在这里加一个大模型的节点效果会更自然,用户体验也会更好。

📌 之前有同学提问,系统提示词和用户提示词有什么区别,这里就和大家详细说明一下。

系统提示词:

是开发者为大语言模型设定的初始参数和行为准则,在整个会话中持续影响大模型的响应模式。通过编写系统提示词,可以为大模型设定特定的角色定位和回复逻辑。

例如:假设你是英语老师,请用中文口语跟我交流,你需要不断用英语围绕知识点提问,来增强我对知识的认知。

这里就为大模型设置了一个英语老师的角色系统提示词,可以帮助你学习英语。

用户提示词:

在与智能体对话时,用户的输入就是用户提示词,它是用户直接向大语言模型提出的具体指令或问题,指导模型执行特定的任务或提供特定的信息。用户提示词的设置应简洁明了,以便模型能够准确捕捉用户的需求。

例如:请根据{{input}}中的内容向我提问。

这里我们用简洁的一句话告诉大模型需要执行的特定任务,大模型就可以围绕这个知识点进行提问了。

这里注意一下:通常情况下,在提示词不多的时候,我们可以把系统提示词和用户提示词都写入到“用户提示词”的文本框中,这样写也没问题。

但如果提示词很多,并且逻辑关系很复杂,建议大家分开输入,这样条理更加清晰,也方便自己查看。

根据上面的讲解,我们就可以这样写我们的大模型提示词。

当然大家这里可以根据自己的需求,编写更符合自己的提升词。

4、结束节点

在工作流的终点,结束节点将输出所有内容,完成整个流程的最后交付。

5、试运行

接下来我们试运行一下,查看一下效果。

看一下输出的效果,是不是很不错~

6、发布工作流

工作流只有发布后,才能被智能体引用噢~

接下来,就让我们把这个工作流接入到智能体中吧~ **

二、创建BOT

1、新建一个BOT

2、引入工作流

在这里,我们使用单Agent的模式引入工作流,单Agento会使工作流更稳定。

添加我们刚才发布的工作流

3、开场白

写一个专业的开场白

三、效果演示

点击问题立即开始生成回答:

到这里,我们的专业的汽车行业客服就做好了,是不是学会了。如果学会了,就快动手试试吧~

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Coze 平台的相关案例与示例 #### 关于 Coze 的定义及其功能 Coze 是一种支持用户快速构建 AI 应用程序的开发平台,它允许开发者通过简单的配置拖拽操作来实现复杂的业务逻辑。这种低代码甚至零代码的方式极大地降低了技术门槛,使得更多的人能够参与到人工智能的应用开发中[^2]。 #### 创建 AI Agent 的具体实例 在 Coze 平台上创建一个属于自己的 AI Agent 可以按照以下方式展开。例如,在一篇详细的教程中提到过如何利用插件建立一个编程机器人。该机器人的主要作用是接收用户的输入请求,调用外部 API 接口获取数据,并将这些数据经过处理后反馈给用户[^3]。 以下是基于上述描述的一个简单 Python 实现例子: ```python import requests def fetch_and_translate(query): # 调用头条接口查询信息 response = requests.get(f"https://api.example.com/search?query={query}") data = response.json() titles = [] for item in data['items']: title = item['title'] translated_title = translate_to_english(title) # 假设有一个函数可以完成翻译 titles.append(translated_title) return titles def translate_to_english(text): # 使用某个翻译服务将中文标题转为英文 translation_response = requests.post( "https://translate.api.example.com", json={"text": text, "source_lang": "zh", "target_lang": "en"} ) return translation_response.json()['translated_text'] if __name__ == "__main__": user_input = input("请输入您想查询的内容:") results = fetch_and_translate(user_input) print("查询结果如下:") for result in results: print(result) ``` 此脚本模拟了一个基本的工作流程,展示了如何从第三方 API 获取数据并对其进行进一步加工的过程。 #### 图像流的概念补充 另外值得一提的是,“图像流”这一概念可能也适用于某些特定场景下的 Coze 应用设计之中。虽然具体的上下文中并未提及太多细节,但从广义角度来看,它可以被理解为一系列连续变化的画面或者视频帧序列,这或许能成为未来扩展 Coze 功能的方向之一[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值