opencv rect画旋转矩形_旋转矩形 - opencv如何实现图像旋转_原理是什么

本文详细介绍了图像围绕任意点旋转的处理过程,包括坐标系的平移和翻转,以及旋转后图像宽高计算。通过分析旋转前后图像四个角点的位置变化,确定旋转后图像的最小边界,从而得到新的宽高。最后,探讨了坐标逆变换以确保旋转后的图像正确对齐于原图像的左上角。
摘要由CSDN通过智能技术生成

1 旋转矩形

这里以图像围绕任意点(center_x, center_y)旋转为例,但是图像的原点在左上角,在计算的时候首先需要将左上角的原点移到图像中心,并且Y轴需要翻转。

而在旋转的过程一般使用旋转中心为坐标原点的笛卡尔坐标系,所以图像旋转的第一步就是坐标系的变换。(x’,y’)是笛卡尔坐标系的坐标,(x,y)是图像坐标系的坐标,经过坐标系变换后

坐标系变换到以旋转中心为原点后,接下来就要对图像的坐标进行变换。

逆变换是

由于在旋转的时候是以旋转中心为坐标原点的,旋转结束后还需要将坐标原点移到图像左上角,也就是还要进行一次变换。

上边两图,可以清晰的看到,旋转前后图像的左上角,也就是坐标原点发生了变换。

在求图像旋转后左上角的坐标前,先来看看旋转后图像的宽和高。从上图可以看出,旋转后图像的宽和高与原图像的四个角旋转后的位置有关。

我们将这个四个角点记为 transLeftTop, transRightTop, transLeftBottom, transRightBottom

设top为旋转后最高点的纵坐标 top = min({ transLeftTop.y, transRightTop.y, transLeftBottom.y, transRightBottom.y });

down为旋转后最低点的纵坐标 down = max({ transLeftTop.y, transRightTop.y, transLeftBottom.y, transRightBottom.y });

left为旋转后最左边点的横坐标 left = min({ transLeftTop.x, transRightTop.x, transLeftBottom.x, transRightBottom.x });

right为旋转后最右边点的横坐标 right = max({ transLeftTop.x, transRightTop.x, transLeftBottom.x, transRightBottom.x });

旋转后的宽和高为newWidth,newHeight,则可得到下面的关系:

旋转完成后要将坐标系转换为以图像的左上角为坐标原点,可由下面变换关系得到:

逆变换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值