1 旋转矩形
这里以图像围绕任意点(center_x, center_y)旋转为例,但是图像的原点在左上角,在计算的时候首先需要将左上角的原点移到图像中心,并且Y轴需要翻转。
而在旋转的过程一般使用旋转中心为坐标原点的笛卡尔坐标系,所以图像旋转的第一步就是坐标系的变换。(x’,y’)是笛卡尔坐标系的坐标,(x,y)是图像坐标系的坐标,经过坐标系变换后
坐标系变换到以旋转中心为原点后,接下来就要对图像的坐标进行变换。
逆变换是
由于在旋转的时候是以旋转中心为坐标原点的,旋转结束后还需要将坐标原点移到图像左上角,也就是还要进行一次变换。
上边两图,可以清晰的看到,旋转前后图像的左上角,也就是坐标原点发生了变换。
在求图像旋转后左上角的坐标前,先来看看旋转后图像的宽和高。从上图可以看出,旋转后图像的宽和高与原图像的四个角旋转后的位置有关。
我们将这个四个角点记为 transLeftTop, transRightTop, transLeftBottom, transRightBottom
设top为旋转后最高点的纵坐标 top = min({ transLeftTop.y, transRightTop.y, transLeftBottom.y, transRightBottom.y });
down为旋转后最低点的纵坐标 down = max({ transLeftTop.y, transRightTop.y, transLeftBottom.y, transRightBottom.y });
left为旋转后最左边点的横坐标 left = min({ transLeftTop.x, transRightTop.x, transLeftBottom.x, transRightBottom.x });
right为旋转后最右边点的横坐标 right = max({ transLeftTop.x, transRightTop.x, transLeftBottom.x, transRightBottom.x });
旋转后的宽和高为newWidth,newHeight,则可得到下面的关系:
旋转完成后要将坐标系转换为以图像的左上角为坐标原点,可由下面变换关系得到:
逆变换