matlab实现肘部法(手肘法)确定kmeans方法k值

本文介绍了在数学建模中使用K-means分类时如何确定最佳K值。作者通过实现肘部法,展示了如何计算簇内误差平方和(SSE),并利用图像拐点找到最佳分类数。代码示例基于Matlab,使用鸢尾花数据集,展示了随着K值增大,SSE的变化情况,验证了肘部法的有效性。博客还邀请读者交流讨论,并承诺分享更多地理数据处理和数据挖掘的实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Author:HanDi
上海某高校遥感专业 工科男
相信积微者速成,相信分享的力量
CSDN@这可真是难为我了

数学建模时用K-means分类时确定K值遇见的一个小问题,上网查,发现matlab版本的没人实现。查看原理也不是很难就自己实现了一下。果然还是自己动手丰衣足食!!!

SSE公式

S S E = ∑ i = 1 k ∑ p ∈ C i ∣ p − m i ∣ 2 S S E=\sum_{i=1}^{k} \sum_{p \in C_{i}}\left|p-m_{i}\right|^{2}

评论 61
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值