Matlab|基于手肘法的kmeans聚类数的精确识别【K-means聚类】

   主要内容   

在电力系统调度研究过程中,由于全年涉及的风、光和负荷曲线较多,为了分析出典型场景,很多时候就用到聚类算法,而K-means聚类就是常用到聚类算法,但是对于K-means聚类算法,需要自行指定分类数,如果没有方法支撑、纯自行确定分类数的话,显得随意性较大,很难令人信服,本次介绍一个方法——手肘法。

方法介绍

手肘法,很形象的命名方式,通过该方法得到的误差曲线类似手肘曲线,就以手肘位置的数作为最佳分类数。下面结合曲线特点来具体分析:

在 K-means 算法聚类过程中,分类数 k 值越大,样本数据被划分得越为精细,各类内样本数据的聚合程度越高,对应得到的误差平方和 SSE 值越小。在 k~SSE折线关系图中,折线的变化情况分为两个阶段:第一阶段,当 k 值小于最优分类数时,随着k值的增长,SSE 值越来越小,变化的幅度比较大,反映到 k~SSE 折线关系图中就是相邻两点之间的连线较陡。第二阶段,当 k 值大于最优分类数后,伴随着 k 值的增长,SSE 值仍是越来越小,但变化的幅度却比较小,反映到折线关系图中就是相邻两点之间的连线较为平缓。因此,随着k值的增长,k值与SSE 值的折线图会呈“手肘形”,而“肘部”对应的k 值即为最优分类数。下图中,最优分类数为肘部部位对应的4 。

SSE为,其计算公式为:

其中,Ci是第i个类,p是Ci类中的所有样本点,mi是Ci类的质心。

程序亮点

  1. 程序内置风电功率和光伏发电功率的拉丁超立方抽样算法,形成了数据集。
  2. 明确了数据更改方式,增加了详尽的修改方法注释,方便上手改成自己的数据。
  3. 可以得到不同聚类场景的概率以及聚类中心数据,程序注释清楚,方便研究使用。
  4. 采用两种方式进行分析,第一种是全年365天实测风力数据,第二种是拉丁超立方抽样方式​。

  部分代码   

clc;clear all
% 基于LHS的可再生能源出力场景生成
ns=1000;
wind_predict = [339,287,449,471,512,530,527,641,634,519,401,634,589,530,512,505,206,85,81,80,83,110,353,523];%风电预测
pv_predict = [0,0,0,0,0,0,99,137,150,178,189,191,176,171,138,104,77,0,0,0,0,0,0,0 ];%光伏预测
wind_equ = 800 * ones(1,24);%风机装机容量
pv_equ = 240 * ones(1,24);%光伏装机容量
wind_sigma = 0.2 * wind_predict + 0.02* wind_equ ;
pv_sigma = 0.2 * pv_predict + 0.02 * pv_equ ; % 预测偏差的标准差
m1=ones(24,1000);%风生成
m2=ones(24,1000);%光生成
m=ones(24,1000);%可再生生成
wind_covariance_matrix = zeros (24,24);
pv_covariance_matrix = zeros (24,24);
for i= 1:24
    wind_covariance_matrix(i,i) = wind_sigma(i)^2;
    pv_covariance_matrix(i,i) = pv_sigma(i)^2;
end
​
for t=1:24
    m1(t,:)=lhsnorm(0,wind_sigma(t),ns);%拉丁超立方采样
    m2(t,:)=lhsnorm(0,pv_sigma(t),ns);
end
mpw=m1+wind_predict.';
mpv=m2+pv_predict.';
%手肘法确定k值
data = mpw';
%修改成自己的数据集的方式如下

  结果一览   

第一种:全年365天实测风力的效果图

第二种:拉丁超立方抽样​

下载链接

<think>好的,我需要帮助用户找到实现光伏发电功率KMeans聚类Matlab代码。首先,用户的问题是关于光伏发电功率的K-means聚类,并且需要Matlab的实现代码。根据用户提供的引用,有几个相关的资源可以参考。 首先,引用[1]提到他们使用Matlab实现了基于K-means的光伏时间序列聚类,但没有给出具体代码。但引用[3]和[4]、[5]都有提到相关的代码实现。例如,引用[3]提到了一个内置了风电和光伏发电功率拉丁超立方抽样的程序,可能包含K-means的实现。引用[4]讨论了遗传算优化K-means,而引用[5]则提供了多种聚类的比较,包括K-means。 用户可能需要的是基本的K-means代码,所以引用[3]可能更直接相关。另外,引用[5]中的基础K-means部分应该也有代码示例。我需要整理这些信息,给出一个基本的K-means实现步骤,并引用相应的文献。同时,用户可能需要代码的示例,所以需要提供一个简单的Matlab代码框架,可能基于引用[3]或[5]中的描述。 需要注意用户可能需要数据预处理的部分,比如光伏发电功率数据的处理,拉丁超立方抽样生成数据集,这在引用[3]中提到过。因此,在代码示例中应该包含数据生成和聚类的步骤,同时提醒用户如何替换自己的数据。 此外,引用[5]中的不同算对比可能对用户有帮助,如果用户需要进一步优化的话,比如改进的ISODATA算,但用户当前的问题集中在K-means,所以主要提供基础代码,并提及优化方作为扩展。 最后,确保回答结构清晰,分步骤说明,并附上相关问题,可能包括优化方、性能评估等,基于提供的引用内容。</think>### 光伏发电功率K-means聚类Matlab实现步骤 根据文献中提到的K-means实现流程,结合光伏数据特性,Matlab实现步骤如下: 1. **数据准备** 采用拉丁超立方抽样生成光伏发电功率数据集,可参考如下代码结构[^3]: ```matlab % 拉丁超立方抽样生成数据集 num_samples = 1000; % 总样本量 num_vars = 24; % 24小时功率数据 data = lhsdesign(num_samples, num_vars); data = data .* (max_power - min_power) + min_power; % 功率归一化 ``` 2. **聚类核心实现** 基础K-means可直接调用Matlab内置函数,或参考以下自定义实现[^5]: ```matlab function [centroids, labels] = my_kmeans(data, k, max_iter) [n_samples, n_features] = size(data); centroids = data(randperm(n_samples, k), :); % 随机初始化聚类中心 for iter = 1:max_iter % 计算欧氏距离 distances = pdist2(data, centroids); [~, labels] = min(distances, [], 2); % 更新聚类中心 new_centroids = zeros(k, n_features); for i = 1:k new_centroids(i,:) = mean(data(labels == i, :), 1); end if norm(new_centroids - centroids) < 1e-6 break; end centroids = new_centroids; end end ``` 3. **场景削减与评估** 使用DBI指数评估聚类质量: ```matlab % 计算戴维森堡丁指数(DBI) function dbi = calculate_DBI(data, labels, centroids) k = size(centroids, 1); S = zeros(1, k); R = zeros(k); for i = 1:k cluster_data = data(labels == i, :); S(i) = mean(sqrt(sum((cluster_data - centroids(i,:)).^2, 2))); end for i = 1:k for j = 1:k if i ~= j R(i,j) = (S(i) + S(j)) / norm(centroids(i,:) - centroids(j,:)); end end end dbi = mean(max(R, [], 2)); end ``` ### 完整代码架构 ```matlab %% 光伏功率聚类主程序 % 1.数据加载与预处理 load('pv_power_data.mat'); % 替换为实际数据 normalized_data = (data - min(data)) ./ (max(data) - min(data)); % 2.手肘确定最佳K(参考引用[3]) sse = []; for k = 1:10 [~, ~, sumd] = kmeans(normalized_data, k); sse(k) = sum(sumd); end plot(sse); % 选择拐点作为最佳K % 3.执行聚类 k = 3; % 根据手肘确定 [centroids, labels] = my_kmeans(normalized_data, k, 100); % 4.结果可视化 figure; for i = 1:k plot(centroids(i,:), 'LineWidth', 2); hold on; end xlabel('时间点'); ylabel('归一化功率'); ``` ### 关键改进方向 1. **初始中心优化**:使用遗传算优化初始聚类中心选择(参考引用[4]) 2. **混合算**:结合IWO算进行参数自适应调整(参考引用[2]) 3. **动态聚类**:采用改进ISODATA算实现类别数自动调整(参考引用[5])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值