论文精度:Advwrsarial Multi-task learning for Text Classification

多任务学习重点:

学习共享层,提取共同特征。

论文创新点:

对抗式多任务学习,减轻共享和私有特征空间之间的互相干扰。

借鉴点:

  • 精确的方式划分特定任务和共享空间,不是粗略共享参数。
  • 将多个任务之间的共享知识压缩成一个现成的神经网络。

 文本分类模型:

LSTM,损失函数是交叉熵。

共享模型(共享私有模型)SP-MTL

 最终特征是将私有空间和共享空间的特征串联。

损失函数:

 

对抗共享-私有模型:

GAN:

生成式对抗网络(Generative Adversarial Networks)有两个模块,生成模块(Generative Model)和判别模块(Discriminative Model)相互博弈学习产生相当好的输出。

G接受一个随机的噪声z,通过噪声生成数据。

D是一个判别网络,判别数据是生成还是真实数据。

多任务学习对抗任务损失

共享递归神经层对抗地向可学习的多层感知器工作,阻止它对任务类型的准确预测。

增加任务对抗损失防止任务的特定特性进入共享空间。被用来训练一个模型产生共享特征,只基于这些特征,分类器是不能准确进行预测任务。

极大极小化思想:LSTM共享层的生成器是生成一个句子表达误导任务,判别器是尽量对任务做成正确分类。

 

 正交约束:

 惩罚冗余的潜在表示,并鼓励共享和私有提取器对输入的不同方面进行编码。消除私有和共享空间中 的冗余。

最终:

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
AF(Association Fusion)是一种基于关联的多模态分类方法。多模态分类是指利用多种不同类型的数据(如图像、文本、音频等)进行分类任务。传统的多模态分类方法通常是将不同类型的数据分别提取特征,然后将这些特征进行融合得到最终结果。AF方法则是通过建立数据之间的关联来实现融合。 具体而言,AF方法首先将每个模态的数据进行特征提取,得到对应的特征向量。然后通过计算每个模态之间的相关度来建立模态之间的关联。这个相关度可以通过不同的方法来计算,例如互信息、皮尔逊相关系数等。 接下来,AF方法通过关联度来调整每个模态的权重。具体来说,权重与关联度成正比,关联度越高的模态将获得更大的权重。这样一来,每个模态的重要程度就会根据数据之间的关联度动态调整。 最后,AF方法通过将每个模态的特征与对应的权重进行加权融合,得到最终的特征向量。这个特征向量可以用于进行分类任务。 与传统的融合方法相比,AF方法能够更准确地捕捉到不同模态数据之间的关联信息。这样一来,融合后的特征向量能够更好地反映整个多模态数据的特征,提高分类准确率。 综上所述,AF是一种基于关联的多模态分类融合方法,通过建立数据之间的关联来动态调整每个模态的权重,从而提高多模态分类的准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值