pytorch函数(1):torch.gather()的正确理解方法

torch.gather()

pytorch 官方文档

torch.gather(input, dim, index, *, sparse_grad=False, out=None) → Tensor

作用:沿着由dim指定的轴收集数值。

  • 参数
input (Tensor) – 目标变量,输入
dim (int) – 需要沿着取值的坐标轴
index (LongTensor) – 需要取值的索引矩阵
sparse_grad (bool,optional) – 如果为真,输入将是一个稀疏张量
out (Tensor, optional) – 输出
  • 简单例子
>>> t = torch.tensor([[1,2],[3,4]])
>>> torch.gather(t, 1, torch.tensor([[0,0],[1,0]]))
tensor([[ 1,  1],
        [ 4,  3]])

解释与例子

torch.gather迷惑大家的点主要是在dim的问题上,大家不知道怎么个取值法。 它的官方文档不太好理解,举得例子也太过于简单,下面我将举个例子详细说明gather的原理。

  • dim=0的情况
input = [
    [0.0, 0.1, 0.2, 0.3],
    [1.0, 1.1, 1.2, 1.3],
    [2.0, 2.1, 2.2, 2.3]
]#shape [3,4]
input = torch.tensor(input)
length = torch.LongTensor([
    [2,2,2,2],
    [1,1,1,1],
    [0,0,0,0],
    [0,1,2,0]
])#[4,4]
out = torch.gather(input, dim=0, index=length)
print(out)

结果

tensor([[2.0000, 2.1000, 2.2000, 2.3000],
        [1.0000, 1.1000, 1.2000, 1.3000],
        [0.0000, 0.1000, 0.2000, 0.3000],
        [0.0000, 1.1000, 2.2000, 0.3000]])

这里直接给到大家对应的取值矩阵。
矩阵
gather函数就是通过length矩阵也就是我上述的矩阵来进行取值的。

例 如 X 20 就 代 表 了 i n p u t 的 第 2 行 第 0 列 的 2.0 例如X_{20}就代表了input的第2行第0列的2.0 X20input202.0
因为dim=0代表的是横向,按行取值。

即length矩阵中的数的值代表的是行数,数的位置代表的列数,比如length矩阵中的第三行第三列(从0数起)的数 0,其值是0,代表在input中所取的数是第0行,位置是第三列,则表示在input中所取的数是第三列
X 03 = 0.3 X_{03} =0.3 X03=0.3

  • dim=1
input = [
    [0.0, 0.1, 0.2, 0.3],
    [1.0, 1.1, 1.2, 1.3],
    [2.0, 2.1, 2.2, 2.3]
]#shape [3,4]
input = torch.tensor(input)
length = torch.LongTensor([
    [2,2,2,2],
    [1,1,1,1],
    [0,1,2,0]
])#[3,4]
out = torch.gather(input, dim=1, index=length)
print(out)

结果

tensor([[0.2000, 0.2000, 0.2000, 0.2000],
        [1.1000, 1.1000, 1.1000, 1.1000],
        [2.0000, 2.1000, 2.2000, 2.0000]])

同理与dim=0时相反,数值代表列数,位置代表行数。所以对应的取值矩阵是
[ X 02 X 02 X 02 X 02 X 11 X 11 X 11 X 11 X 20 X 21 X 22 X 20 ] \begin{bmatrix} X_{02}& X_{02}& X_{02}& X_{02}\\ X_{11}& X_{11}& X_{11}& X_{11}\\ X_{20}& X_{21}& X_{22}& X_{20} \end{bmatrix} X02X11X20X02X11X21X02X11X22X02X11X20

总结一下

  • dim=0
    length矩阵中的数的值代表的是行数,所处位置代表的是列数。
    所以此时length矩阵里面的数的值应当小于input.shape[0]=3(不能等于因为是从0计数),length矩阵的的最大列数应当小于等于input.shape[1]=4(此处可以等于因为是列数)

  • dim=1
    length矩阵中的数的值代表的是列数,所处位置代表的是行数。
    所以此时length矩阵里面的数的值应当小于input.shape[1]=4(不能等于因为是从0计数),length矩阵的的最大行数应当小于等于input.shape[0]=3(此处可以等于因为是行数)
    如有疑问欢迎留言询问哦。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值