混沌系统在图像加密中的应用(随机性测试之FIPS 140-2测试和SP800-22测试)

混沌系统在图像加密中的应用(随机性测试之FIPS 140-2测试和SP800-22测试)

前言

本节内容我们将学习混沌序列的随机性测试,那么前面讲了,混沌系统产生的随机序列,它的随机性到底好不好,除了看相图、分岔图、指数图以外,还有一个非常重要的指标,那就是FIPS 140-2测试和SP800-22测试。随机序列需要进行FIPS 140-2测试和SP800-22测试的原因如下:

(1)保证密码学模块的安全性:密码学模块在加密和解密敏感信息时使用随机数生成器来增加对手动解密和猜测攻击的抵抗力。通过进行FIPS 140-2测试,可以验证密码学模块是否符合安全标准,确保其实施和设计的安全性,以有效地保护敏感信息。
(2)确定随机序列的随机性质:随机序列的质量和随机性对于许多应用很重要,例如密码学、模拟、加密算法等。SP800-22测试提供了一系列严格的统计测试和随机性分析,用于评估随机序列的质量。通过这些测试,可以确定随机序列是否具有良好的统计特性、无可预测性和抵抗性,以确保其适用于相应的应用。
(3)防止基于伪随机性的攻击:如果随机数生成器生成的序列存在规律或可预测的模式,攻击者可能会利用这些弱点进行攻击。FIPS 140-2测试和SP800-22测试能够检测并确保随机数生成器生成的序列具有足够的随机性、不可预测性和安全性,以防止基于预测的攻击。

一、FIPS 140-2测试

FIPS 140-2测试是由美国国家标准与技术研究院(NIST)所制定的一套密码学模块的安全性标准,适用于用于加密和解密敏感信息的应用程序和设备。主要目的是确保密码学模块的设计和实施符合安全标准,以保护敏感信息不受未经授权的访问和攻击。

FIPS 140-2测试包含四个不同的安全级别(Level 1至Level 4),每个级别有一系列的要求和测试。其中,要求包括随机数生成器(RNG)的要求和随机数生成过程的精确指定,以确保生成的随机数足够随机、不可预测和安全。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
下面我们还是用logistic混沌映射为例,迭代20000次,通过python测试出结果如下,可以看出能通过FIPS 140-2测试
在这里插入图片描述

二、SP800-22测试

SP800-22测试是NIST发布的一项特殊出版物,目的是评估随机数生成器的质量和随机性。这些测试方法可以用于各种各样的随机性检测场景,并且是各种安全标准和规范的基础。

SP800-22测试提供了一系列统计测试和随机性分析,用于检查生成的随机数序列是否具有良好的统计特性和随机性。其中包括频次测试、卡方测试、最长序列测试、游程测试、秩测试等。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、python代码说明

由于篇幅有限,FIPS 140-2测试代码在下面已给出,SP800-22测试的随机性测试代码有需要的读者私信我。

import numpy as np

def logistic_map(x0, r, n):
    """Logistic map implementation"""
    x =
加密图像处理技术的应用范围及发展趋势研究报告随着成像技术的日臻完善,计算机技术的高速发展、电子产品普遍推广,数字图像技术已经渗透到人们日常生活、生产的方方面面,在通信、视频(包括电视广播等)、文档(包括文字、数字、符号等)、生物、医学、遥感、雷达、测绘等领域发挥着重要的作用。 数字图像技术可分为图像处理图像分析、图像理解三个方面。图像处理技术包括:图像采集、获取及存储;图像重建、图像变换、滤波、增强、恢复/复原、校正等;图像(视频)压缩编码;图像数字水印和图像信息隐藏。图像分析技术包括:边缘检测、图像分割;目标表达、描述、测量;目标颜色、形状、纹理、空间、运动等的分析;目标检测、提取、跟踪、识别和分类;人体生物特征提取和验证。图像理解技术包括:图像配准、匹配、融合、镶嵌;3D表示、建模、重构、场景恢复;图像感知、解释、推理;基于内容的图像和视频检索。 目前已有很多图像应用系统,如烟草制造检测系统、印钞检测系统、电子组装检测系统、质量检测系统、自动识别系统、测量系统、智能视觉检测系统、表面检测系统、印刷检测系统、包装检测系统、复杂工业对象视觉在线监测系统、汽车制造监测系统、机器视觉车牌检测系统、生物识别系统、保安监控系统、机器视觉医疗检测系统、光学检查系统等。这些应用系统的设计,往往涉及多种数字图像技术,有相当大的难度,而当今社会智能化、信息化的趋势也对数字图像应用系统的设计提出了更高的要求。同时,数字图像处理技术的发展也有着广阔的前景。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Owl City、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值