I loaded the mnist_conv.py example from official github of Lasagne.
At the and, I would like to predict my own example. I saw that "lasagne.layers.get_output()" should handle numpy arrays from official documentation, but it doesn't work and I cannot figure out how can I do that.
Here's my code:
if __name__ == '__main__':
output_layer = main() #the output layer from the net
exampleChar = np.zeros((28,28)) #the example I would predict
outputValue = lasagne.layers.get_output(output_layer, exampleChar)
print(outputValue.eval())
but it gives me:
TypeError: ConvOp (make_node) requires input be a 4D tensor; received "TensorConstant{(28, 28) of 0.0}" (2 dims)
I understand that it expects a 4D tensor, but I don't have any idea how to correct it.
Can you help me? Thanks
解决方案
As written in your error message, the input is expected to be a 4D tensor, of shape (n_samples, n_channel, width, height). In the MNIST case, n_channels is 1, and width and height are 28.
But you are inputting a 2D tensor, of shape (28, 28). You need to add new axes, which you can do with exampleChar = exampleChar[None, None, :, :]
exampleChar = np.zeros(28, 28)
print exampleChar.shape
exampleChar = exampleChar[None, None, :, :]
print exampleChar.shape
outputs
(28, 28)
(1, 1, 28, 28)
Note: I think you can use np.newaxis instead of None to add an axis. And exampleChar = exampleChar[None, None] should work too.