强化学习(TD3)

本文介绍了TD3算法,它是DDPG的优化版本,通过双重收集策略降低估值过估,目标策略平滑正则化提高准确度,以及延迟更新机制防止策略错误累积。文章提供了详细的伪代码演示算法流程。

TD3——Twin Delayed Deep Deterministic policy gradient 双延迟深度确定性策略梯度

TD3是DDPG的一个优化版本,旨在解决DDPG算法的高估问题

优化点:

双重收集:采取两套critic收集,计算两者中较小的值,从而克制收集过估量成绩。

DDPG源于DQN,DQN源于Q_learning,这些算法都是通过估计Q值来寻找最优的策略,在强化学习中,更新Q网络的目标值target为:y=r+\gamma max_{a^{'}}Q\left ( s^{'}, a^{'} \right ),因为样本存在噪声\epsilon,所以真实情况下,有误差的动作价值估计的最大值通常会比真实值更大:

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值