TD3——Twin Delayed Deep Deterministic policy gradient 双延迟深度确定性策略梯度
TD3是DDPG的一个优化版本,旨在解决DDPG算法的高估问题
优化点:
①双重收集:采取两套critic收集,计算两者中较小的值,从而克制收集过估量成绩。
DDPG源于DQN,DQN源于Q_learning,这些算法都是通过估计Q值来寻找最优的策略,在强化学习中,更新Q网络的目标值target为:,因为样本存在噪声
,所以真实情况下,有误差的动作价值估计的最大值通常会比真实值更大:

本文介绍了TD3算法,它是DDPG的优化版本,通过双重收集策略降低估值过估,目标策略平滑正则化提高准确度,以及延迟更新机制防止策略错误累积。文章提供了详细的伪代码演示算法流程。
最低0.47元/天 解锁文章
6427

被折叠的 条评论
为什么被折叠?



