Bagging、Boosting的区别

Bagging、Boosting的区别

  1. 样本选择:Bagging算法是有放回的随机采样;Boosting算法是每一轮训练集不变,只是训练集中的每个样例在分类器中的权重发生变化,而权重根据上一轮的分类结果进行调整;
  2. 样例权重:Bagging使用随机抽样,样例的权重;Boosting根据错误率不断地调整样例的权重值,错误率越大则权重越大;
  3. 预测函数:Bagging所有预测模型的权重相等;Boosting算法对于误差小的分类器具有更大的权重;
  4. 并行计算:Bagging算法可以并行生成各个基模型;Boosting理论上只能顺序产生,因为后哟个模型需要前一个模型的结果;
  5. Bagging是减少模型的方差;Boosting是减少模型的偏度;
  6. Bagging里每个分类模型都是强分类器,因为降低的是方差,方差过高需要降低是过拟合;Boosting里每个分类模型都是弱分类器,因为降低的是偏度,偏度过高是欠拟合。
    在这里插入图片描述

Bagging对样本重采样,对每一轮的采样数据集都训练一个模型,最后取平均。

由于样本集的相似性和使用的同种模型,因此各个模型都具有相似的偏差bias和方差variance:

E ( ∑ i = 1 n X i n ) = E ( X i ) E(\frac{\sum_{i=1}^{n}X_{i}}{n})=E(X_{i}) E(ni=1nXi)=E(Xi)
V a r ( ∑ i = 1 X i n ) = V a r ( X i ) n , 模 型 完 全 独 立 Var(\frac{\sum_{i=1}X_{i}}{n})=\frac{Var(X_{i})}{n},模型完全独立 Var(ni=1Xi)=nVar(Xi),
V a r ( ∑ i = 1 X i n ) = V a r ( X i ) , 模 型 完 全 相 同 Var(\frac{\sum_{i=1}X_{i}}{n})=Var(X_{i}),模型完全相同 Var(ni=1Xi)=Var(Xi),

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: bagging:是一种集成学习方法,通过对训练数据进行有放回的随机抽样,生成多个子集,然后在每个子集上训练一个基学习器,最后将这些基学习器的预测结果进行平均或投票来得到最终的预测结果。 boosting:也是一种集成学习方法,但与bagging不同的是,它是通过对训练数据进行加权,使得基学习器更加关注那些难以分类的样本,从而提高整体的预测准确率。 stacking:是一种更加高级的集成学习方法,它不仅仅是将多个基学习器的预测结果进行简单的平均或投票,而是将这些预测结果作为新的特征,再训练一个元学习器来得到最终的预测结果。 ### 回答2: BaggingBoosting和Stacking都是集成学习(Ensemble Learning常用的方法。 Bagging(自举汇聚法)是一种并行集成方法,基于自助采样的思想,通过构建多个相互独立的分类器(如决策树),再进行投票或求平均等方式进行集成。每个子分类器都是在不同的训练数据集上训练得到的,可以减少模型的方差,提高模型的稳定性,有效降低过拟合风险。 Boosting(提升法)则是一种串行集成方法,通过迭代训练一系列弱分类器(如决策树),通过不断调整样本权重以使错误样本更加关注,然后再结合所有弱分类器形成一个强分类器。Boosting可以提高模型的准确性,特别适用于处理复杂的分类问题。 Stacking(堆叠泛化法)是一种更为复杂的集成方法,它结合了BaggingBoosting的优势。在Stacking,首先构建多层的分类器(如基分类器、元分类器等),每层的输出作为下一层的输入。最后通过一个元分类器来整合各层的输出结果,以获得最终的预测结果。 总结起来,Bagging通过并行地构建多个相互独立的分类器进行集成,Boosting通过迭代地训练一系列弱分类器形成一个强分类器,而Stacking通过构建多层的分类器以获得更强大的预测能力。这些集成方法在实际应用,能够有效提高分类模型的准确性和稳定性,达到更好的预测效果。 ### 回答3: BaggingBoosting和Stacking都是常用于集成学习(ensemble learning的方法。 Bagging是基于自助采样(bootstrap sampling)的一种集成学习方法。在Bagging,我们从原始数据集使用有放回地进行采样得到多个不同的子样本集,并使用这些子样本集独立地训练多个基学习器。最后,通过对基学习器的预测结果进行投票或求平均来得到最终的集成模型。Bagging能够减少过拟合,提高模型的稳定性和泛化能力。 Boosting也是一种集成学习方法,与Bagging不同的是它是基于序列训练的。在Boosting,基学习器是按顺序训练的,每个基学习器都会根据前一个学习器的预测结果对样本进行调整。Boosting的核心思想是通过迭代训练一系列弱学习器,使得它们能够逐步提升性能并最终形成一个强学习器。常用的Boosting算法有AdaBoost和Gradient Boosting。 Stacking是一种更高级的集成学习方法,它将多个不同类型的基学习器集成在一起。在Stacking,我们首先使用训练数据集对多个基学习器进行训练,然后使用这些基学习器对测试数据集进行预测。接着,我们将基学习器的预测结果作为输入,再训练一个元学习器来得到最终的集成模型。Stacking通过将不同类型的基学习器进行组合,可以充分利用它们的优势,提高模型的性能和泛化能力。 综上所述,BaggingBoosting和Stacking都是集成学习常用的方法,它们通过组合多个基学习器来提高模型的性能和泛化能力,从而在实际应用取得更好的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值