数据挖掘——时间序列算法之趋势拟合法

时间序列预测算法 专栏收录该内容
11 篇文章 2 订阅

前言

趋势拟合法就是把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型的方法。包括线性拟合非线性拟合。至于要选择哪个拟合函数,最关键的还是要画出已有数据的曲线分布,然后选择和其耦合度最好的模型。

其他关于时间序列的预测算法,参见我的其他博文:

(1)、平滑法
(2)、趋势拟合法
(3)、组合模型
(4)、AR模型
(5)、MA模型
(6)、ARMA模型
(7)、ARIMA模型
(8)、ARCH模型
(9)、GARCH模型及其衍生模型

线性拟合

线性拟合的使用场合为长期趋势呈现出线形特征的场合(需要画图看出)。参数估计方法为最小二乘估计。可以使用线性回归来处理。

曲线拟合

如果长期趋势呈现出非线性特征,那么我们可以用曲线典线模型来拟合它。对曲线模型进行参数估计时,能转换成线性模型的都转化成线性模型,用线性最小二乘法进行参数估计,实在不能转化成线性模型的,就用迭代法进行参数估计。

可使用如下6个来选择最适合自己数据的曲线:

1、二次型

数学表达:
T t = a + b t + c t 2 (1) T_{t}=a+bt+ct^{2}\tag{1} Tt=a+bt+ct2(1)
参数a、b、c的求解方法:

令 t 2 = t 2 , 原 模 型 变 换 为 T t = a + b t + c t 2 , 那 么 就 可 以 用 最 小 二 乘 法 求 解 了 。 令t_{2}=t^{2},原模型变换为T_{t}=a+bt+ct_{2},那么就可以用最小二乘法求解了。 t2=t2Tt=a+bt+ct2

2、指数型

数学表达:
T t = a b t (2) T_{t}=ab^{t}\tag{2} Tt=abt(2)

参数a、b的求解方法:

对原模型求对数: T T ‘ = l n T t T^{`}_{T}=lnT_{t} TT=lnTt,则 a ‘ = l n a , b ‘ = l n b a^{`}=lna,b^{`}=lnb a=lna,b=lnb,则原模型可写为:
T t , = a , + b , t T_{t}^{,}= a^{,}+b^{,}t Tt,=a,+b,t

那么用线性最小二乘法求出 a , , b , a^{,},b^{,} a,b,,再做变换: a = e a , a=e^{a^{,}} a=ea, b = e b , b=e^{b^{,}} b=eb,

3、修正指数型

数学表达:
T t = a + b c t (3) T_{t}=a +bc^{t}\tag{3} Tt=a+bct(3)

参数a、b的求解方法:
没办法,只能用用迭代法。

4、Gompertz型

数学表达:
T t = e a + b c t (4) T_{t}=e^{a+bc^{t}}\tag{4} Tt=ea+bct(4)
参数a、b的求解方法:
没办法,只能用用迭代法。

5、Logistic型

数学表达:
T t = 1 a + b c t (5) T_{t}=\frac{1}{a + bc^{t}}\tag{5} Tt=a+bct1(5)

参数a、b的求解方法:
没办法,只能用用迭代法。

  • 0
    点赞
  • 0
    评论
  • 15
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值