OpenCV
文章平均质量分 64
macan_dct
一直在思考怎样才能有意义地过这一生,却发现时间从来没让我这么去做
展开
-
使用conda和pip批量安装Python包
使用conda和pip批量安装Python包1. conda方式批量安装2. pip方式批量安装在debug Yolov5之前,需要按照其txt文件中指定的包的版本来指定安装工程需要的Python包,截图如下:(这里面的torch慎装,因为这种方式装的pytorch不吃吃GPU,如果某个包不想安装,只要在该行前面输入注释符就行)1. conda方式批量安装进入(cd)到txt文件所在文件夹路径下,运行以下命令:$ conda install --file=requirements_conda.t原创 2022-01-12 11:24:23 · 2548 阅读 · 0 评论 -
使用tengine部署模型时,编译报错:fatal error: NvInfer.h: No such file or directory | #include <NvInfer.h>
使用tengine部署模型时,编译报错:fatal error: NvInfer.h: No such file or directory | #include 很明显,就是缺少头文件,这个头文件是自己配置tengine部署环境中需要安装的TensorRT带的头文件,(有关在Ubuntu系统上配置TensorRT的相关内容,详见我的另一篇博客:Ubuntu18配置CUDA10.2 cudnn8.0.1 TensorRT7.1.3.4)那么就需要在编译部署代码的CMakeList.txt中指定这个头文件的路径原创 2022-01-11 11:00:05 · 1828 阅读 · 4 评论 -
Ubuntu18配置CUDA10.2 cudnn8.0.1 TensorRT7.1.3.4
来自实际项目,项目简述:自动驾驶测试阶段,需要在车端测试算法运行在一个带有2080Ti工控机,这里使用tengine来部署模型。由于项目保密原因,本文不使用实际本团队开发的算法,就仅仅使用tengine自带的demo,完全够用。原创 2022-01-11 10:11:00 · 1317 阅读 · 0 评论 -
在tengine平台使用TensorRT运行目标检测算法
使用开源的tengine在GPU上使用TensorRT运行目标检测模型原创 2022-01-11 10:08:17 · 2086 阅读 · 1 评论 -
Ubuntu18配置CUDA10.2 cudnn8.0.1(cuda_10.2.run格式+cudnn-10.2-linux-x64-v8.0.1.13.tgz格式)
Ubuntu18配置CUDA10.2 cudnn8.0.1(cuda_10.2.run格式+cudnn-10.2-linux-x64-v8.0.1.13.tgz格式)原创 2022-01-11 09:38:30 · 1168 阅读 · 0 评论 -
C++的OpenCV函数 cvReleaseImage
cvReleaseImage表面理解就是释放读取的图片的内存,对应读图片使用的是cvLoadImage。使用cvReleaseImage后,会设置此时图片占用的内存数据为NULL,但是该内存地址不会被释放,当有新图片使用cvLoadImage读时,会放在这个被置位NULL的内存地址处,详情如下:#include "highgui.h"#include "OCV.h"void openCV::debugcvReleaseImage(char imgPath[100]) { if (imgPath原创 2021-12-14 08:59:12 · 2762 阅读 · 0 评论