Ubuntu18配置CUDA10.2 cudnn8.0.1 TensorRT7.1.3.4

Ubuntu18配置CUDA10.2 cudnn8.0.1 TensorRT7.1.3.4

来自实际项目,项目简述:自动驾驶测试阶段,需要在车端测试算法运行在一个带有2080Ti工控机,这里使用tengine来部署模型。由于项目保密原因,本文不使用实际本团队开发的算法,就仅仅使用tengine自带的demo,完全够用。

配置分为两个部分:

  1. ubuntu18配置cuda和cudnn,参见我的另一篇博客,Ubuntu18配置CUDA10.2 cudnn8.0.1(cuda_10.2.run格式+cudnn-10.2-linux-x64-v8.0.1.13.tgz格式)

  2. ubuntu18配置TensorRT
    https://zhuanlan.zhihu.com/p/371239130

一. ubuntu18配置cuda和cudnn

不多说了,网上一大堆,但是这里需要注意不同的cuda文件格式,有很大不同,我在我的另一篇博客里面介绍了cuda.run+cudnn.tar格式配置的内容,连接如上所述。

二. ubuntu18配置TensorRT

注意版本,注意版本,注意版本。cuda、cudnn和tensorrt这三者的版本需要严格匹配,在tengine项目的源码中可以清楚地看到各个版本的匹配信息:
在这里插入图片描述实践证明,本人使用cuda10.2+cudnn8.0.1.13+tensorrt7.1.3.4也行!

(1)下载相应版本的TensorRT

确定自己需要的版本,去官网下载
在这里插入图片描述(2)解压TensorRT

$ tar -zxvf TensorRT-7.1.3.4.Ubuntu-18.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz -C /usr/local/TensorRT

(3)添加环境变量

解压之后需要添加环境变量,以便让我们的程序能够找到TensorRT的libs。

$ vim ~/.bashrc

添加以下内容

$ export LD_LIBRARY_PATH=/usr/local/TensorRT/lib:$LD_LIBRARY_PATH
$ export LIBRARY_PATH=/usr/local/TensorRT/lib::$LIBRARY_PATH

这样TensorRT就安装好了

关于在tengine中使用TensorRT,烦请关注本博主,参加另一篇博客:[在tengine平台使用TensorRT运行目标检测算法](https://blog.csdn.net/weixin_42211626/article/details/122425281)
自编译tensorflow: 1.python3.5,tensorflow1.12; 2.支持cuda10.0,cudnn7.3.1,TensorRT-5.0.2.6-cuda10.0-cudnn7.3; 3.无mkl支持; 软硬件硬件环境:Ubuntu16.04,GeForce GTX 1080 TI 配置信息: hp@dla:~/work/ts_compile/tensorflow$ ./configure WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown". You have bazel 0.19.1 installed. Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3 Found possible Python library paths: /usr/local/lib/python3.5/dist-packages /usr/lib/python3/dist-packages Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with XLA JIT support? [Y/n]: XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 10.0]: Please specify the location where CUDA 10.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda-10.0 Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: 7.3.1 Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda-10.0]: Do you wish to build TensorFlow with TensorRT support? [y/N]: y TensorRT support will be enabled for TensorFlow. Please specify the location where TensorRT is installed. [Default is /usr/lib/x86_64-linux-gnu]://home/hp/bin/TensorRT-5.0.2.6-cuda10.0-cudnn7.3/targets/x86_64-linux-gnu Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with. You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1,6.1,6.1]: Do you want to use clang as CUDA compiler? [y/N]: nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=monolithic # Config for mostly static monolithic build. --config=gdr # Build with GDR support. --config=verbs # Build with libverbs support. --config=ngraph # Build with Intel nGraph support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. Preconfigured Bazel build configs to DISABLE default on features: --config=noaws # Disable AWS S3 filesystem support. --config=nogcp # Disable GCP support. --config=nohdfs # Disable HDFS support. --config=noignite # Disable Apacha Ignite support. --config=nokafka # Disable Apache Kafka support. --config=nonccl # Disable NVIDIA NCCL support. Configuration finished 编译: bazel build --config=opt --verbose_failures //tensorflow/tools/pip_package:build_pip_package 卸载已有tensorflow: hp@dla:~/temp$ sudo pip3 uninstall tensorflow 安装自己编译的成果: hp@dla:~/temp$ sudo pip3 install tensorflow-1.12.0-cp35-cp35m-linux_x86_64.whl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值