Samples
Overview
针对室外拍摄的野外小麦图像进行准确的小麦头检测可能存在视觉上的挑战性。密密麻麻的小麦植物经常重叠在一起,加上风会使照片模糊不清,此外,小麦外观会因成熟度,颜色,基因和头部方向而异,这些原因都导致单个小麦头的识别变得困难。最后,由于小麦在世界范围内种植,因此必须考虑不同的品种,种植密度,样式和田间条件。
该数据集是由来自七个国家的九个研究机构主导完成的,分别是the University of Tokyo, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Arvalis, ETHZ, University of Saskatchewan, University of Queensland, Nanjing Agricultural University, and Rothamsted Research.
数据集共含有3422张训练图像(.jpg)以及147793个bounding box标签
Data Format
train -- 含有小麦头检测用训练图像3422张
test -- 含有小麦头检测用测试图像10张
train.csv -- 含有小麦头检测框坐标
数据预处理
获取所有训练图像的标签,imgs_label_dict字典键、值分别为图像以及图像中小麦头对应的bounding box, 同一个图像中可能含有多个小麦头,因此键值为列表,每个元素格式为[xmin, ymin, width, height]
童鞋们使用时只要修改对应的root_path即可直接调用下面代码获取bounding box 标签
import csv
imgs_lable_dict = {}
with open(os.path.join(root_path, "train.csv"), "r") as file:
csv_file = csv.reader(file)
csv_file.__next__()
for row in csv_file:
if row[0] + ".jpg" not in imgs_lable_dict.keys():
imgs_lable_dict[row[0] + ".jpg"] = []
imgs_lable_dict[row[0] + ".jpg"].append([float(i) for i in row[3].split("[")[1].split("]")[0].split(",")])
Citation
Cite as: arXiv:2005.02162 [cs.CV]
(or arXiv:2005.02162v2 [cs.CV] for this version)
扫码关注后,后台回复 wheat 即可获得