Global Wheat Detection数据集

Samples

图片

图片

Overview

针对室外拍摄的野外小麦图像进行准确的小麦头检测可能存在视觉上的挑战性。密密麻麻的小麦植物经常重叠在一起,加上风会使照片模糊不清,此外,小麦外观会因成熟度,颜色,基因和头部方向而异,这些原因都导致单个小麦头的识别变得困难。最后,由于小麦在世界范围内种植,因此必须考虑不同的品种,种植密度,样式和田间条件。

该数据集是由来自七个国家的九个研究机构主导完成的,分别是the University of Tokyo, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Arvalis, ETHZ, University of Saskatchewan, University of Queensland, Nanjing Agricultural University, and Rothamsted Research.

数据集共含有3422张训练图像(.jpg)以及147793个bounding box标签

Data Format

图片

train -- 含有小麦头检测用训练图像3422张

test -- 含有小麦头检测用测试图像10张

train.csv -- 含有小麦头检测框坐标

数据预处理

获取所有训练图像的标签,imgs_label_dict字典键、值分别为图像以及图像中小麦头对应的bounding box, 同一个图像中可能含有多个小麦头,因此键值为列表,每个元素格式为[xmin, ymin, width, height]

童鞋们使用时只要修改对应的root_path即可直接调用下面代码获取bounding box 标签

import csvimgs_lable_dict = {}with open(os.path.join(root_path, "train.csv"), "r") as file:    csv_file = csv.reader(file)    csv_file.__next__()    for row in csv_file:        if row[0] + ".jpg" not in imgs_lable_dict.keys():            imgs_lable_dict[row[0] + ".jpg"] = []        imgs_lable_dict[row[0] + ".jpg"].append([float(i) for i in row[3].split("[")[1].split("]")[0].split(",")])

Citation

Cite as: arXiv:2005.02162 [cs.CV] 

(or arXiv:2005.02162v2 [cs.CV] for this version)

扫码关注后,后台回复 wheat 即可获得

图片

<think>好的,我需要帮用户寻找目标检测数据集的网站汇总。首先,用户提到了几个引用,其中引用[1]和引用[2]是关于特定数据集的专栏,可能来自某个平台,比如CSDN或GitHub。但用户现在需要的是更广泛的网站列表,而不仅仅是专栏内的数据集。 我应该先回顾常见的公开数据集平台。比如Kaggle,那里有很多用户上传的数据集,涵盖各种类型的目标检测任务。然后有Google的Open Images Dataset,微软的COCO,这些是学术界常用的基准数据集。PASCAL VOC也是一个经典的数据集,虽然可能比较旧,但仍有参考价值。 接下来,针对工业应用或特定领域的数据集,比如用户提到的红外图像或小目标检测,可能需要更专业的平台。例如,Roboflow提供数据集的转换和处理工具,方便直接用于训练。此外,GitHub上有许多开源项目会附带数据集,可以通过搜索关键词找到。 还有一些学术机构或竞赛平台提供数据集,比如ImageNet,虽然主要用于分类,但部分数据也可用于目标检测。另外,Waymo Open Dataset专注于自动驾驶领域,包含大量标注数据。nuScenes也是一个类似的自动驾驶数据集。 用户可能还需要知道如何访问这些网站。比如,Kaggle的网址是https://www.kaggle.com/,COCO的官网是http://cocodataset.org/,Roboflow是https://roboflow.com/。需要确保这些链接是正确且可访问的。 另外,用户提到的引用中的数据集可能来自某个特定专栏,比如CSDN的某个博主整理的资源,这类平台也是获取数据集的途径之一。但需要提醒用户注意版权和使用许可,确保合法使用数据集。 可能还需要包括政府或研究机构开放的数据,例如NASA的Earthdata或欧盟的Copernicus项目,这些可能涉及遥感或卫星图像,适合特定目标检测任务。不过这可能属于比较专业的领域,用户如果没有特别提到,可能不需要优先列出。 总结一下,我需要整理一个分门别类的网站列表,包括综合平台、学术基准、专业领域资源以及数据处理工具,同时提供简要描述和网址。此外,需要根据用户提供的引用,补充类似专栏或平台的信息,比如工业缺陷检测或红外数据集的专业来源。 最后,生成相关问题,帮助用户深入探索,比如如何选择合适的数据集,如何处理数据格式等。确保回答结构清晰,符合用户的要求,使用正确的中文和LaTeX格式。</think>以下是目标检测数据集的网站汇总及使用建议,涵盖通用数据集和特定应用场景资源: ### 一、通用目标检测数据集平台 1. **Kaggle** - 特点:提供超过5万+公开数据集,支持工业检测、医学影像、自动驾驶等多领域,可直接下载预处理后的数据 - 示例数据集:[Global Wheat Detection](https://www.kaggle.com/c/global-wheat-detection) - 优势:附带社区讨论和代码范例 2. **COCO (Common Objects in Context)** - 包含80类物体标注,超过33万张图像,支持实例分割、关键点检测等任务 - 基准价值:主流模型如YOLO、Faster R-CNN均在此验证性能 $$ \text{mAP}_{COCO} = \frac{1}{N}\sum_{i=1}^{N} AP_i $$ [^1] 3. **Open Images V7** - 谷歌发布的600类物体数据集,包含1.9M训练图像和16M边界框标注 - 特殊标注:层级化标签体系和视觉关系标注 ### 二、垂直领域专用数据集 1. **工业缺陷检测** - [MVTec AD](https://www.mvtec.com/company/research/datasets/mvtec-ad):包含15类工业品表面缺陷数据 - 特点:提供无缺陷样本作为负样本,支持异常检测算法验证 2. **小目标检测** - [VisDrone](https://github.com/VisDrone/VisDrone-Dataset):无人机视角的1万+图像,标注密度达$50.4 \text{ bbox/img}$ - [TinyPerson](https://github.com/ucas-vg/TinyBenchmark):平均目标尺寸小于$20 \times 20$像素[^2] 3. **红外与遥感** - [FLIR ADAS](https://www.flir.com/oem/adas/):热成像数据集含10,000+标注帧 - [DOTA-v2.0](https://captain-whu.github.io/DOTA/dota.html):遥感图像检测数据集,含18类旋转框标注 ### 三、数据服务与处理平台 1. **Roboflow** - 提供数据集格式转换(支持YOLO、COCO、Pascal VOC等)、增强和版本管理 - 案例:可将COCO格式转换为$YOLOv5$所需的`txt`标注格式: ```python # 转换命令示例 roboflow convert --format yolo-darknet --dataset-id <dataset_id> ``` 2. **Labelbox** - 支持协作标注与质量验证,提供API接口实现标注流水线自动化 ### 四、学术竞赛数据集 | 平台 | 数据集 | 特点 | |------|--------|------| | [AIZOOTech](https://www.aizoo.com/) | 口罩检测数据集 | 多尺度人脸遮挡场景 | | [Waymo Open Dataset](https://waymo.com/open/) | 自动驾驶数据 | 包含激光雷达与多视角同步数据 |
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

田土豆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值