案例:宝洁销售额预测分析

本文通过分析宝洁公司的销售数据,展示了数据预处理、相关性分析和线性回归模型建立的过程。针对local_tv的56个空值问题,采用填充方式进行处理,同时将类别变量event转换为数字变量。通过相关性分析发现各变量与revenue的关系,并对模型进行了评估和优化,探讨了不同填充方式对模型效果的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先说明一下宝洁的背景,没有个人独家门店,寄托在第三方,比如商场
在这里插入图片描述
聚合类数据
在这里插入图片描述
下列数据均以月为观测窗口:
在这里插入图片描述
分析流程
数据概况分析,单变量分析,相关与可视化,回归模型
在这里插入图片描述

1.1 调包&into函数
在这里插入图片描述
在这里插入图片描述
用index_col=0,去除Unnamed=0的数据
在这里插入图片描述
从基本数据可以看到,local_tv有56个空值,event是object类似string,即类别型变量,在线性回归里面是没办法处理这个问题

解决问题一,处理local_tv的56个空值
在这里插入图片描述
describe()还可以去确认数据和真实场景情况是否一致

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值