DataFrame.pivot_table(values=None, index=None, columns=None, aggfunc=‘mean’, fill_value=None, margins=False, dropna=True, margins_name=‘All’, observed=False, sort=True)
重要的几个参数:
values:要透视的值
columns:透视的列
index:分类的索引
以pandas手册中的例子说明
df = pd.DataFrame({“A”: [“foo”, “foo”, “foo”, “foo”, “foo”,
“bar”, “bar”, “bar”, “bar”],
“B”: [“one”, “one”, “one”, “two”, “two”,
“one”, “one”, “two”, “two”],
“C”: [“small”, “large”, “large”, “small”,
“small”, “large”, “small”, “small”,
“large”],
“D”: [1, 2, 2, 3, 3, 4, 5, 6, 7],
“E”: [2, 4, 5, 5, 6, 6, 8, 9, 9]})
df
A B C D E
0 foo one small 1 2
1 foo one large 2 4
2 foo one large 2 5
3 foo two small 3 5
4 foo two small 3 6
5 bar one large 4 6
6 bar one small 5 8
7 bar two small 6 9
8 bar two large 7 9
行索引是AB,列是C,根据ABC来求D值的和:
table = pd.pivot_table(df, values=‘D’, index=[‘A’, ‘B’],
columns=[‘C’], aggfunc=np.sum)
table
C large small
A B
bar one 4.0 5.0
two 7.0 6.0
foo one 4.0 1.0
two NaN 6.0