导语:
数据透视表(Pivot Table)是一种交互式的表,可以进行某些计算,如求和与计数等。所进行的计算与数据跟数据透视表中的排列有关。之所以称为数据透视表,是因为可以动态地改变它们的版面布置,以便按照不同方式分析数据,也可以重新安排行号、列标和页字段。每一次改变版面布置时,数据透视表会立即按照新的布置重新计算数据。另外,如果原始数据发生更改,则可以更新数据透视表。在使用Excel做数据分析时,透视表是很常用的功能,Pandas也提供了透视表功能,对应的API为pivot_table
一.pivot_table函数介绍
pandas有两个pivot_table函数,pandas.pivot_table和pandas.DataFrame.pivot_table,
pandas.pivot_table 比 pandas.DataFrame.pivot_table 多了一个参数data,data就是一个dataframe,实际上这两个函数相同。
pivot_table参数中最重要的四个参数 values,index,columns,aggfunc,下面通过案例介绍pivot_tabe的使用
二.零售会员数据案例分析
某女鞋连锁零售企业,当前业务以线下门店为主,线上销售为辅,通过对会员的注册数据以及的分析,监控会员运营情况,为后续会员运营提供决策依据
会员等级说明:
① 白银: 注册(0)
② 黄金: 下单(1~3888)
③ 铂金: 3888~6888
④ 钻石: 6888以上
数据分析要达到的目标:
描述性数据分析,使用业务数据分析出会员运营的基本情况
案例中用到的数据为:
① 会员信息查询.xlsx
② 会员消费报表.xlsx
③ 门店信息表.xlsx
④ 全国销售订单数量表.xlsx
这些文件已经加载在资源里了,读者可自行下载。
三.需求实现
首先我们导入数据:
import pandas as pd
data = pd.read_excel('会员信息查询.xlsx')
data
结果如图所示: