Pandas数据透视表--pivot_table

本文介绍了如何使用Pandas的pivot_table函数对零售会员的注册数据进行按月统计、增量等级分布和占比分析,展示了如何通过数据透视表功能实现会员运营状况的描述性数据分析,并提供了实际案例和可视化代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导语:

数据透视表(Pivot Table)是一种交互式的表,可以进行某些计算,如求和与计数等。所进行的计算与数据跟数据透视表中的排列有关。之所以称为数据透视表,是因为可以动态地改变它们的版面布置,以便按照不同方式分析数据,也可以重新安排行号、列标和页字段。每一次改变版面布置时,数据透视表会立即按照新的布置重新计算数据。另外,如果原始数据发生更改,则可以更新数据透视表。在使用Excel做数据分析时,透视表是很常用的功能,Pandas也提供了透视表功能,对应的API为pivot_table

一.pivot_table函数介绍

pandas有两个pivot_table函数,pandas.pivot_table和pandas.DataFrame.pivot_table,

pandas.pivot_table 比 pandas.DataFrame.pivot_table 多了一个参数data,data就是一个dataframe,实际上这两个函数相同。

pivot_table参数中最重要的四个参数 values,index,columns,aggfunc,下面通过案例介绍pivot_tabe的使用

二.零售会员数据案例分析

某女鞋连锁零售企业,当前业务以线下门店为主,线上销售为辅,通过对会员的注册数据以及的分析,监控会员运营情况,为后续会员运营提供决策依据

会员等级说明:

① 白银: 注册(0)

② 黄金: 下单(1~3888)

③ 铂金: 3888~6888

④ 钻石: 6888以上

数据分析要达到的目标:

描述性数据分析,使用业务数据分析出会员运营的基本情况

案例中用到的数据为:

① 会员信息查询.xlsx

② 会员消费报表.xlsx

③ 门店信息表.xlsx

④ 全国销售订单数量表.xlsx

这些文件已经加载在资源里了,读者可自行下载。

三.需求实现

首先我们导入数据:

import pandas as pd
data = pd.read_excel('会员信息查询.xlsx')
data

结果如图所示:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Master_清欢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值