卡方检验是一种统计方法,用于确定两个类别变量之间是否具有显着相关性。这些变量都应来自相同的人群,并且应该是分类的,例如-是/否,男性/女性,红色/绿色等。例如,我们可以使用对人们的冰淇淋购买模式的观察来构建数据集,并尝试进行关联具有他们喜欢的冰淇淋口味的人的性别。如果发现相关性,我们可以通过了解来访者的性别人数来计划适当的风味储备。
我们使用numpy库中的各种函数来进行卡方检验。
from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 10, 100)
fig,ax = plt.subplots(1,1)
linestyles = [':', '--', '-.', '-']
deg_of_freedom = [1, 4, 7, 6]
for df, ls in zip(deg_of_freedom, linestyles):
ax.plot(x, stats.chi2.pdf(x, df), linestyle=ls)
plt.xlim(0, 10)
plt.ylim(0, 0.4)
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Chi-Square Distribution')
plt.legend()
plt.show()
其输出如下-
翻译自: https://www.tutorialspoint.com/python_data_science/python_chi_square_test.htm
推荐阅读--
我司空降了一名专家后,一半程序员疯了...
程序员长假相亲图鉴(文末惊喜)
每日一课 | Python –如何在函数中使用全局变量
每日一课 | Python将文件读入列表
每日一课 | 如何将String转换为int
球分享
球点赞
球在看