跟着问题学8——GoogLeNet网络详解及代码实战

GoogLeNet

GoogLeNet是2014年Christian Szegedy等人在2014年大规模视觉挑战赛(ILSVRC-2014)上使用的一种全新卷积神经网络结构,并以6.65%的错误率力压VGGNet等模型取得了ILSVRC-2014在分类任务上的冠军,于2015年在CVPR发表了论文《Going Deeper with Convolutions》。在这之前的AlexNet、VGG等结构都是通过增大网络的深度(层数)来获得更好的训练效果,但层数的增加会带来很多负作用,比如overfitting、梯度消失、梯度爆炸等,GoogLeNet则做了更加大胆的网络结构尝试,Inception的提出则从另一种角度来提升训练结果:能更高效的利用计算资源,在相同的计算量下能提取到更多的特征,从而提升训练结果,采用了Inception结构的GoogLeNet深度只有22层,其参数约为AlexNet的1/12,是同时期VGGNet的1/3。

    GoogLeNet是谷歌(Google)提出的深度网络结构,为什么不叫“GoogleNet”,而叫“GoogLeNet”,是为了向经典模型“LeNet”致敬

Inception结构

Inception(盗梦空间结构)是经典模型GoogLeNet中最核心的子网络结构,GoogLeNet是Google团队提出的一种神经网络模型,并在2014年ImageNet挑战赛(ILSVRC14)上获得了冠军。Google团队在随后2年里不断改进,相继提出了v1-v4和xcpetion结构

Inception就是将多个卷积或池化操作放在一起组装成一个网络模块,设计神经网络时,以模块为单位去组装整个网络结构。Inception结构设计了一个稀疏网络结构,但是能够产生稠密的数据,既能增加神经网络表现,又能保证计算资源的使用效率。

 

如图所示,原始inception的结构就是对于同一个特征图输入,并行放置一个1*1,3*3,5*5和一个3*3池化层,让这些网络层同步对前面的特征图计算提取信息,然后将其在通道维度上合并(这也就意味着这些网络层计算输出的新特征图的长宽尺寸是一致的)。好处是可以使提取出来的特征具有多样化,并且特征之间的co-relationship不会很大,最后用把feature map都concatenate起来使网络做得很宽,然后堆叠Inception Module将网络变深。但仅仅简单这么做会使一层的计算量爆炸式增长

这里涉及到另一个问题,因为卷积层参数的数量是size*size*in_channel*out_channel,这也就意味着3*3和5*5尺寸的卷积核在通道数多的时候参数是巨大的,

假设input feature map的size为 28 × 28 × 256 28\times28\times256 28×28×256,output feature map的size为 28 × 28 × 480 28\times28\times480 28×28×480,则native Inception Module的计算量有854M。计算过程如下

从上图可以看出,计算量主要来自高维卷积核的卷积操作,因而在每一个卷积前先使用 1×1卷积核将输入图片的feature map维度先降低,进行信息压缩,在使用3x3卷积核进行特征提取运算,

相同情况下,Inception v1的计算量仅为358M。

GoogLeNet中使用了9个Inception v1 module,分别被命名为inception(3a)、inception(3b)、inception(4a)、inception(4b)、inception(4c)、inception(4d)、inception(4e)、inception(5a)、inception(5b)。

辅助分类器

GoogLeNet网络结构中有深层和浅层2个分类器,两个辅助分类器结构是一模一样的,其组成如下图所示,这两个辅助分类器的输入分别来自Inception(4a)和Inception(4d)。

辅助分类器的第一层是一个平均池化下采样层,池化核大小为5x5,stride=3;第二层是卷积层,卷积核大小为1x1,stride=1,卷积核个数是128;第三层是全连接层,节点个数是1024;第四层是全连接层,节点个数是1000(对应分类的类别个数)。

在模型训练时的损失函数按照: L o s s = L 0 + 0.3 ∗ L 1 + 0.3 ∗ L 2 Loss=L_0+0.3*L_1+0.3*L_2 Loss=L0​+0.3∗L1​+0.3∗L2​, L 0 L_0 L0​是最后的分类损失。

在训练模型时,将两个辅助分类器的损失乘以权重(论文中是0.3)加到网络的整体损失上,再进行反向传播。在测试阶段则去掉辅助分类器,只记最终的分类损失。

    辅助分类器的两个分支有什么用呢?

        作用一:可以把他看做inception网络中的一个小细节,它确保了即便是隐藏单元和中间层也参与了特征计算,他们也能预测图片的类别,他在inception网络中起到一种调整的效果,并且能防止网络发生过拟合。

        作用二:给定深度相对较大的网络,有效传播梯度反向通过所有层的能力是一个问题。通过将辅助分类器添加到这些中间层,可以期望较低阶段分类器的判别力。在训练期间,它们的损失以折扣权重(辅助分类器损失的权重是0.3)加到网络的整个损失上。

模型结构

 

  • 9个inception模块堆叠
  • depth,共22层,算上池化层就27层
  • 权重和计算量均匀分配给各层
  • output size = #1×1 + #3×3 + #5×5 + pool proj
  • 所有卷积都使用了修正线性激活(rectified linear activation,ReLU)
  • avg pool:Global Average Pooling(全局平均池化),一个channel用一个平均值代表,取代FC层,减少参数量。优点:①便于迁移学习②top-1提高了0.6%的准确率
  • 线性层:使网络能很容易地适应其它的标签集。

辅助分类器:

·  原理:浅层特征对于分类已经有足够的区分性

·  位于Inception (4a)和Inception (4b)模块的输出上

·  训练时:损失函数

  • L = L主 + 0.3 * L辅1 + 0.3 * L辅2 ; 预测时:不管这两个辅助分类器。
  • 后面的控制实验表明辅助网络的影响相对较小(约0.5),只需要其中一个就能取得同样的效果。

包括辅助分类器在内的附加网络的具体结构如下:

  • 一个大小5×5,步长3的平均池化层
  • 具有128个1×1卷积,用于降维和修正线性激活
  • 具有1024个单元和修正线性激活的全连接层
  • 70% dropout层
  • 带有softmax损失的线性层作为分类器(作为主分类器预测同样的1000类,但在推断时移除)

模型亮点

首先说说该模型的亮点:

    采用了模块化的设计(stem, stacked inception module, axuiliary function和classifier),方便层的添加与修改。

        Stem部分:论文指出Inception module要在网络中间使用的效果比较好,因此网络前半部分依旧使用传统的卷积层代替

        辅助函数(Axuiliary Function):从信息流动的角度看梯度消失,因为是梯度信息在BP过程中能量衰减,无法到达浅层区域,因此在中间开个口子,加个辅助损失函数直接为浅层

        Classifier部分:从VGGNet以及NIN的论文中可知,fc层具有大量层数,因此用average pooling替代fc,减少参数数量防止过拟合。在softmax前的fc之间加入dropout,p=0.7,进一步防止过拟合。

    使用1x1的卷积核进行降维以及映射处理 (虽然VGG网络中也有,但该论文介绍的更详细)。

    引入了Inception结构(融合不同尺度的特征信息)。

    丢弃全连接层,使用平均池化(average pooling)层,大大减少模型参数。

    为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度(辅助分类器)。辅助分类器是将中间某一层的输出用作分类,并按一个较小的权重(0.3)加到最终分类结果中,这样相当于做了模型融合,同时给网络增加了反向传播的梯度信号,也提供了额外的正则化,对于整个网络的训练很有裨益。而在实际测试的时候,这两个额外的softmax会被去掉。

代码


model.py

model.py

import torch
import torch.nn as nn
import torch.optim
import random
import torch.nn.functional as F

#将卷积层和relu层封装到一起
class BasicConv2d(nn.Module):
    def __init__(self,in_channel,out_channel,**kwargs):
        super(BasicConv2d,self).__init__()
        self.conv=nn.Conv2d(in_channels=in_channel,out_channels=out_channel,**kwargs)
        # ReLU(inplace=True):将tensor直接修改,不找变量做中间的传递,节省运算内存,不用多存储额外的变量
        self.relu=nn.ReLU(inplace=True)
    def forward(self,x):
        x=self.conv(x)
        x=self.relu(x)
        return x

class Inception(nn.Module):
    def __init__(self,in_channels,ch1x1,ch3x3red,ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception,self).__init__()
        # 分支1,单1x1卷积层
        self.branch1=BasicConv2d(in_channels,ch1x1,kernel_size=1)
        # 分支2,1x1卷积层后接3x3卷积层
        self.branch2=nn.Sequential(
            BasicConv2d(in_channels,ch3x3red,kernel_size=1),
            # 保证输出大小等于输入大小
            BasicConv2d(ch3x3red,ch3x3,kernel_size=3,padding=1)
        )
        # 分支3,1x1卷积层后接5x5卷积层
        self.branch3=nn.Sequential(
            BasicConv2d(in_channels,ch5x5red,kernel_size=1),
            # 保证输出大小等于输入大小
            BasicConv2d(ch5x5red,ch5x5,kernel_size=5,padding=2)
        )
        # 分支4,3x3最大池化层后接1x1卷积层
        self.branch4=nn.Sequential(
            nn.MaxPool2d(kernel_size=3,stride=1,padding=1),
            BasicConv2d(in_channels,pool_proj,kernel_size=1)
        )
    # forward():定义前向传播过程,描述了各层之间的连接关系及数据的流动和维度变化
    def forward(self,x):
        branch1=self.branch1(x)
        branch2=self.branch2(x)
        branch3=self.branch3(x)
        branch4=self.branch4(x)
        # 在通道维上连结输出,四个维度分别是batch_size,通道,高和宽
        outputs=[branch1,branch2,branch3,branch4]
        # cat():在给定维度上对输入的张量序列进行连接操作,通道在第1维
        return  torch.cat(outputs,dim=1)
# 辅助分类器
class InceptionAux(nn.Module):
    def __init__(self,in_channels,num_classes):
        super(InceptionAux,self).__init__()
        self.averagePool=nn.AvgPool2d(kernel_size=5,stride=3)
        self.conv=BasicConv2d(in_channels,out_channel=128,kernel_size=1)
        # in_features,上一层output[batch, 128, 4, 4],128X4X4=2048
        self.fc1=nn.Linear(in_features=2048,out_features=1024)
        self.fc2=nn.Linear(in_features=1024,out_features=num_classes)
    def forward(self,x):
        # 输入:分类器1:Nx512x14x14,分类器2:Nx528x14x14
        x=self.averagePool(x)
        # 输入:分类器1:Nx512x14x14,分类器2:Nx528x14x14
        x=self.conv(x)
        # 输入:N x 128 x 4 x 4
        x=torch.flatten(x,1)
        # 设置.train()时为训练模式,self.training=True
        x=F.dropout(x,p=0.5,training=self.training)
        # 输入:N x 2048
        x=F.relu(self.fc1(x),inplace=True)
        x=F.dropout(x,p=0.5,training=self.training)
        # 输入:N x 1024
        x = self.fc2(x)
        # 返回值:N*num_classes
        return x

# 定义GoogLeNet网络模型
class GoogLeNet(nn.Module):
    # init():进行初始化,申明模型中各层的定义
    # num_classes:需要分类的类别个数
    # aux_logits:训练过程是否使用辅助分类器,init_weights:是否对网络进行权重初始化
    def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits

        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        # ceil_mode=true时,将不够池化的数据自动补足NAN至kernel_size大小
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        # 如果为真,则使用分类器
        if self.aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)
        # AdaptiveAvgPool2d:自适应平均池化,指定输出(H,W)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)
        # 如果为真,则对网络参数进行初始化
        if init_weights:
            self._initialize_weights()

    # forward():定义前向传播过程,描述了各层之间的连接关系
    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        # 设置.train()时为训练模式,self.training=True
        if self.training and self.aux_logits:
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.training and self.aux_logits:
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000 (num_classes)
        if self.training and self.aux_logits:
            return x, aux2, aux1
        return x

    # 网络结构参数初始化
    def _initialize_weights(self):
        # 遍历网络中的每一层
        for m in self.modules():
            # isinstance(object, type),如果指定的对象拥有指定的类型,则isinstance()函数返回True
            # 如果是卷积层
            if isinstance(m, nn.Conv2d):
                # Kaiming正态分布方式的权重初始化
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                # 如果偏置不是0,将偏置置成0,对偏置进行初始化
                if m.bias is not None:
                    # torch.nn.init.constant_(tensor, val),初始化整个矩阵为常数val
                    nn.init.constant_(m.bias, 0)
            # 如果是全连接层
            elif isinstance(m, nn.Linear):
                # init.normal_(tensor, mean=0.0, std=1.0),使用从正态分布中提取的值填充输入张量
                # 参数:tensor:一个n维Tensor,mean:正态分布的平均值,std:正态分布的标准差
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)


if __name__=="__main__":
    x = torch.randn([1, 3, 224, 224])
    # [3, 4, 6, 3] 等则代表了bolck的重复堆叠次数
    # blocks_num=[3,4,6,3]
    # model=ResNet(BasicBlock,blocks_num,num_classes=7)
  #  blocks_num = [3, 4, 6, 3]
    model = GoogLeNet(num_classes=7)
    y = model(x)
    #print(y.size())
    print(model)

参考资料

  1. 《动手学深度学习》 — 动手学深度学习 2.0.0 documentation
  2. https://blog.csdn.net/weixin_44772440/article/details/122952961
  3. https://zhuanlan.zhihu.com/p/54289848
  4. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., & Anguelov, D. & Rabinovich, A.(2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值