构造一条二次bezier曲线_对圆锥曲线张量法的一点补充

本文是对 质点同学 的圆锥曲线的三维矢量解法系列文章的补充。

本文会不定期更新,如果我想到有价值的新内容的话。

【在一条直线上的点列】

我们知道已知两点

,它们的连线
,我们用两个点矢量叉乘可以得到一个线矢量。

但是我们还想用这个两个点矢量得到点矢量的集合,这个集合中的点分布在直线

上,形成点列。

就是我们想要的点列。首先证明点列中的点
在直线
上。因为
,所以点列上的点都在直线
上。接下来证明当
取遍所有实数的时候,直线
上任意点都在点列中(可以认为
时得到
),
是三维矢量,
构成了二维矢量平面,当规范取
的时候,也就是与令一个平面
相交,交线是一条直线,箭尾在原点,箭头落在交线上的矢量都形如
,而对应的笛卡尔坐标系的几何点就是
,也形成了一条直线(严格说是点列,是点的集合,而不是线),与直线
重合,因此直线
上任意点都在点列中。

【过一个点的线束】类似讨论。 直线

的交点为
,求过
的线束。

就是我们想要的线束。

【在一条直线上取一个点】

给你线矢量

,要你给出一个点
,你可能会说,这只能用解析方法了吧,我总得知道
的坐标
,然后才能找一组
使得
吧,只告诉直线
,坐标信息都被封装在符号内部了,张量语言又不能把坐标提取出来,怎么能求点呢?

别忘了还有一个特殊的直线

,因此可以天然地做叉乘
,从而该点在
上。

所以给你一个线矢量

必能找出一个无穷远点落在它上,而且该点是用张量运算表示的,不涉及坐标系。这个结论有什么用途呢?我们用一个线矢量得到了一个点矢量,意味着我们已有的对象变多了,可以组合出来的对象、组合的途径也更多了。比如一条直线确定了在这条直线上的点列,可是用一个点
是表示不出点列的,引入
后有两个点就可以表示点列了。(猜想是否可能单靠一条直线
,连点
也不给你,就可以表示点列了呢?我还不清楚)

【求另一个交点】

给定一个直线

,它交一个二次曲线
于两个交点,已知其中一个交点为
,求另一个交点

用解析几何的做法,我们会把

的直线方程与
的二次曲线方程联立,消元,然后转化为一元二次方程求根。

我们现在想用张量语言来表达出

,不涉及引入坐标系,方程联立等解析做法,纯粹用张量运算(张量积、点乘、叉乘等)来表示
,这样的好处是我们可以利用
进行后续的张量运算,可以在整个解题过程中除了最后代入坐标计算外都使用张量语言。

我们在直线

取不同于
的任意一点
,那么根据之前的结论存在一个
使得
,现在已经有了
,要表示
只需要求

能被唯一确定是因为
不仅在
上也在
上,也就是
,代入表达式,利用
也在
上这一条件来化简,得到
,则
,可以验证右侧的表达式满足规范不变性的。

这样我们需要

进行后续运算的话,用右侧替换就行了。

当我们最后开始引入坐标系计算结果的时候,任找一个

上的
也不是问题,但毕竟题中没有给你
,一个任意选的东西在公式中总是缺乏美感,所以我个人喜欢取
来当
,这样的
是被
唯一确定的。

例题:

椭圆

,与
的一个交点为
,求另一个交点
的坐标。

这里

点其实很容易取,比如
,当然也可以取无穷远点

下面用

算。

,结果是
,规范取一后,
,这就是
的坐标。

【求弦中点】

设直线

交椭圆
两点,求
的中点
(用
表示)。

中点这一概念涉及到长度,而我们还停留在用张量语言描述射影关系,无法描述长度。

但是我们已经学了

为调和点列当且仅当
为中点。

取一个点

构造一个退化二次点列(用
表示)使得
为不动点,那么
就与
对合,从而求出
,与
叉乘得到

例子,还是上面那题的背景,用坐标法可知

,现在演示张量法。

【过弦中点的直线】

与椭圆
相交,椭圆中心为
,弦中点为
,求直线

,也就是说直线
是过点
以及
极点的直线。

从另一个角度来看,如果我们做仿射变换,把椭圆变成圆,很明显直线两交点切线的交点与中心的连线过直线的中点,而仿射变换不改变交比,因此椭圆的时候它也过直线中点。

【例题】来源:羽悠:一道非对称型的椭圆题

9fa9cc1b83cdd550c750971060567d77.png

椭圆

为长轴端点,过定点
作直线交椭圆于
中点,直线
于点
,求证
为定值。

本题自由变量只有一个,那就是直线

的斜率,当它确定后其余点和线都确定了。为了表示一条直线,我们可以直接设线矢量
,但是我们已经知道纯粹用张量语言分别求直线与椭圆的两个交点是很难做到的,除非还知道另一个交点,但直线
特殊之处在于它过定点
,于是我们转而设点
为自由变量,它的点矢量为
。那么
, 把直线
与另一个交点都表示出来了。

注意直线

,线矢量为
,恰好是用度规下降的
,所以
的极线,点为
,它为
。因为
, 所以
的极点是
极线的交点,因此点
就是
的极点,

然后我们延长

,它们的交点必然落在
上(为什么?回想作椭圆内的点的极线的方法,就是取过该点的两条直线交椭圆于四点,然后延长交点连线,得到两个新交点,其连线即为该点极线)设交点为
,那么
都可以利用
表示:

叉乘后第一项消去,然后我们调整
,得到

接下来仅需引入坐标系,算出结果。

,所以

因为

在椭圆上,因此代入
后式子化为定值
。Q.E.D.

【过一点向直线作垂线】

已知点

和直线
,求过点
的垂线

我们知道

意味着
互相垂直,那么单就
的几何意义是什么呢?

我们从指标判断这是一个点矢量,它在

上,又因为
,它也在无穷远直线上。所以它就是直线
与无穷远直线的交点。有了这个点,再找出
上另一个点,就可以确定
了,这另一个点就是题目中给的
,所以

【点到直线的投影点】

已知点

和直线
,求点
在直线
上的投影点

只要我们能求出过

的垂线,那么它与直线
交点就就是
,按照上一段的知识,

【对合的诱导/构造】

我们知道限制在二维矢量子空间的

可以确定一个对合,也就是若
,则
,读者不妨代入验证此式,而且这个解是方程的唯一解,那么
就可以视为对
做一个线性变换得到唯一对应的
,而且容易知道
,根据定义,
就是一个对合变换,我们称它是
诱导的对合。

但是三维矢量空间中的圆锥曲线张量

并不能诱导对合,事实上,有无数个分布在
的极线上的点都可以充当
使得
. 但是
(这里的
是指三维二阶反对称张量,不是上面的二维二阶反对称张量,也不是通常的三维三阶反对称张量)作用在
上给出的
依然满足
,也就是
的极线上的一个点。这个发现或许有用,就像我们之前研究如何在一条直线上取一个点一样,增大了几何对象的组合潜力。三维二阶反对称张量,需要确定三个分量才能利用反对称性补全所有分量,因此我们改变三个分量,只要不是同比例改变,我们就获得了新的
,这样我们不断改变,就可以不断获取极线上的点,这个发现也可能有用。

对第一句话做一个注释:什么叫矢量限制在二维矢量子空间?比如对点矢量空间做一个限制,就是限制点矢量只能在一个子空间中取值。比如我们限制子空间的点矢量对应的点都在同一个点列上,从而点矢量的三维坐标中只剩下两个自由变量了,其中一个维度的坐标是被别的维度的坐标完全确定的,因此就退化成了二维坐标。圆锥曲线点集张量

也就退化成了一个二维二阶张量,若它是椭圆,则在这个子空间内只有两个点在椭圆点集中。因为二维二阶反对称张量只需要确定一个分量,就能根据反对称性补全剩余分量,而这个分量,具体的数值是无关紧要的,因为我们使用齐次坐标,具有规范不变性。这个分量变大变小
给出的都是同一个几何对象
,因此
才能成为对合。同理,限制线矢量空间的线矢量都要过某个定点,这些线矢量只需要两个维度来表示,子空间中只有两条线在椭圆线集中,就是定点到这个椭圆的两条切线,而任给一条过定点的直线,我们都能给出对合的另一条过定点的直线,注意,一旦我们扩大空间,不再限制变换
作用的直线必须过定点,
就不能成为一个对合。

以上的对合是限制在二维子空间中的,在完整三维矢量空间上,我们也能构造出对合,在椭圆外(或者内)给定一个定点,如果过这个点的直线与椭圆交于两个点,那么这两个点就是对合点,切点就是对合的不动点。为什么这能构成一个对合?首先,我们从几何上容易发现椭圆上的点都被所有过定点的点列一一配对了,但配对不代表对合,对合变换必须是个线性变换,也就是说我们要证明,如果有两个交点

必须是个线性变换,根据【求另一个交点】一节的内容,同一直线上的定点
与交点
确定了
,我们可以换种形式,令
为单位矩阵,则
,简写成
,张量积与张量缩并显然是线性变换,因此
就是
诱导的对合变换。线束的情况可以类似讨论,在一条定直线
上任取一点作为线束中心(与前面的过定点的所有点列相呼应,这里也可以说成是过定直线的所有线束),
是线束中一条与椭圆相切的直线,我们用这个公式可以给出该线束中另一条与椭圆的切线,它们互相对合。

反过来,如果在三维矢量空间中,我们有一个作用在椭圆上的点的对合变换

,它一定对应着一个椭圆外的定点,正是过这个定点的所有点列与椭圆相交形成一组组交点对,每个交点对中的点被
互相对合。线束的情况同理。这个结论在下面例题中有用。质点同学在二次点列与二次对合一文中用交比证明出了对合点
必然满足
,几何意义就是过
极点的所有点列与椭圆点集相交得到两个交点
,此极点即为定点。

【例题】来源:二次点列与二次对合

题意:给定椭圆

,有 一条直线
交椭圆于两点
,并且这两点分别与椭圆上顶点
的连线
满足斜率之和为
,求证
过定点,并且求出定点。

这题可以有一个比原文更简单的做法。

本题出现了两个对合变换,斜率之和的条件给出了作用在过

的直线上的对合变换
(这点等会儿严格证明),任两条对合直线与椭圆的除
外的另两个交点也对合(这点等会儿也严格证明),换句话说,过
直线的对合变换
诱导出了椭圆上的点的对合变换

而根据上一节说的,椭圆上的点的对合变换

可以由一个定点
生成,过定点的任意直线交椭圆于两点,这两点互相对合,过
向椭圆作两切线,两切点
即为
的不动点。反过来,给定两个不动点
为两点切线的交点,

开始计算:

我们根据

得出在
作用下不动的两条直线
,根据【求另一个交点】中的内容,设置两个辅助的无穷远点
,则点坐标
,对应切线坐标为
,因此
即为所求定点。

题目做完了,现在开始证明之前用到的的结论。第一,为什么

诱导出了对合变换
,首先,这个方程是对称,可以满足
的条件,但是我们还需要证明
是个线性变换,设点
的笛卡尔坐标为
,那么
,可以验证
使得
成立。我们既然构造出了
,它是一个矩阵或者说一个张量,自然是线性变换。第二,怎么证明椭圆上的点的对合
是线性变换,因为我们可以把把
作用在点
得到相应点,
的对合
是线性变换自然推出
是线性变换。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值