三维叉乘怎么算_圆锥曲线第十四节:二次点乘与二次叉乘

目录:

质点:圆锥曲线题目的三维矢量解法​zhuanlan.zhihu.com

我们在第八节中已经涉及到了“二次点”和“二次线”(它们统称二次曲线)的概念,我们现在要更深入地讨论它们。在这一节中我们将不选取度规,因此对(0,2)型张量与(2,0)型张量会进行明确的区分。

我们把形如

的二次线称为I型二次线,形如
的二次线称为II型二次线,把不可逆的
称为III型二次线。对二次点同理。

二次曲线和点、线相比有更加丰富的运算。我们接下来讨论其中的两个运算,它们分别是点乘与叉乘的推广。我们将讨论它们的代数等式及几何意义:

为二次线,
为二次点,则它们之间的二次点乘
为实数,定义为
。若
,称二次点
在二次线
上。

为二次线,则它们之间的二次叉乘
为二次点,定义为
(可自行验证,这样得到的张量仍然是
对称张量)

为二次点,则它们之间的二次叉乘
为二次线,定义为

其中反对称张量

的非零分量都取正负1,而这就导致它依赖于坐标系。但实际上,它对坐标系的依赖并不明显,唯一的表现是我们有时会用到(0,2)型与(2,0)型张量的行列式。而只有(1,1)型张量的行列式才不依赖于坐标系。

如果我们只讨论I型二次曲线,就能看出来二次点乘与二次叉乘分别是点乘与叉乘的推广:

。即,如果
上,那么
上;两个点对应的二次点的二次叉乘等于两个点叉乘对应的二次线。点、线的点乘、叉乘与I型二次曲线的二次点乘、二次叉乘之间是同构的。

叉乘满足反交换律,但二次叉乘却满足交换律:

,这是因为在二次叉乘的定义式中有两个反对称张量,交换
时它们同时产生负号,于是便抵消了。

三个二次点或三个二次线之间可以定义混合积

。在三维矢量间,交换混合积中元素的顺序时有时需要变号,有时不需要。而在二次曲线的混合积中,可以任意交换混合积的顺序而不变号!具体地说, 比如对三个二次线,

反交换律被交换律代替,最重要的影响就是不再有

了,而是
:对于可逆的二次曲线,和自己叉乘竟然可以得到自己的逆!

之后的一些等式需要用到以下公式:

这个等式是

的推广(只要将
作为度规,就可以看出这一点)

二次叉乘中含有两个

,这时它们可以同时消去并留下来一个行列式函数作为系数。因此,二次叉乘可以用逆以及缩并等张量运算表示出来(用刚介绍的等式证明),表达式有些复杂,是

或者也有公式:

,其中
是任意张量。

虽然这个等式很复杂,但用它可以证明出一些形式简单一些的等式,其中一个正是上文的

。其他等式还有

(这个等式可以用混合积的交换性立即得到)

二重外积公式也变得更复杂了一些:

以下这个等式是正确的,它体现了点与线的对偶性。


现在我们研究一下这个问题:对于一个二次点

和二次线
,“
上”直观上表明它们具有怎样的几何关系?

如果

是I型二次点,那么几何关系就是
对应的曲线上(圆锥曲线、两条直线或一条直线),这是我们早就研究过的。

如果

是II型二次点,
是I型二次线,那么
意味着
,即
通过
之一。

如果

是II型二次点,
是II型二次线,那么
意味着它们之间有调和点列的关系。如图,f是A、B两点的对称积,h是CP、CQ两线的对称积,则
等价于
成调和点列,或
成调和线束。自然,也可以从对合变换的角度进行理解。

e93f3bf5787fa5fffa83a48e51cb30f7.png

如果

是II型二次点,
是III型二次线(圆锥曲线),则
等价于
,即
关于
共轭,或者说
两点互在对方的极线上。

如果

是III型二次点(圆锥曲线),
是I型二次线,则
意味着
与圆锥曲线相切。

如果

是III型二次点(圆锥曲线),
是II型二次线,则
意味着
关于
共轭,或者说它们互相穿过对方的极点。

如果

是III型二次点,
是III型二次线,那
的意义似乎并不很明显。为了寻找它的几何意义,我们在
上取一点
,再过
的两条切线,切于
。按照我们在“退化圆锥曲线”一节学到的公式,有
,因此
。因为
上,自然有
。如果
不在
上,那么
,这时
当且仅当
,即
关于
共轭。整理一下语言,我们有:

是III型二次点,
是III型二次线,取点
上但不在
上。则
的两条切线的切点关于
共轭当且仅当

baa1b3c9ea171cab73b6541c289849a5.png

类似地,

是III型二次点,
是III型二次线,取线
切于
但不切于
。则
的两个交点的切线关于
共轭当且仅当

fafbcf63346188c2c1d4cdec4e3815d1.png

再次强调,

并不意味着

现在我们来讨论两个二次曲线叉乘的几何意义。我们的讨论以二次点的叉乘为主。

为I型二次点,
为II型二次点,则
,即
的两个点分别与
对应的点连线所得到的两条直线形成的二次线。

为I型二次点,
为III型二次点(圆锥曲线)。利用公式
,并把
作为度规以简化代数式,得到
这是II型二次线:如同我们在“退化二次曲线”一节讨论过的,它是过点
作两条
的切线的对称积。如果
上,两条切线重合,它再退化成I型二次线。

均为II型二次点,则
其中第二步把它化成了对称积的形式。这是由
两条退化二次线生成的圆锥曲线系,参数
。可以证明这个曲线系的特点:
四点在
对应的圆锥曲线上的交比正是
——这意味着这四点形成了二次调和点列。因此结论是:

均为II型二次点,则
是这样一条圆锥曲线:它经过
四点,且
关于这条圆锥曲线构成二次调和点列。

这一结论可以利用混合积的性质轻易地证明。设

上,则
。运用混合积的交换性,把它改写为
,即
。这涉及到I型二次点与II型二次点的叉乘,这是我们已经讨论过的,因此上式等价于
,即
四条线构成调和线束。我们在“二次点列与二次对合”一节讲过,当且仅当
上时,
上四点的交比等于这四点与
连线的交比。因此满足以上条件的
在使得
构成调和点列的二次曲线上。证毕。

可以自行讨论两个特殊情况:1.

两点重合。2.
三点共线。这里略去。

均为III型二次点(圆锥曲线),则
上意味着
,即
。前者我们已经讨论过,它是从
的两条切线。这两条切线关于
共轭,等价于它们与
的两条切线形成调和点列。因此结论是:

均为III型二次点,则
是这样一条圆锥曲线:
上当且仅当
的四条切线形成调和线束。

这条曲线具有奇妙的几何性质。我们看下面的图:

25167fc08d4d963570a73a2289219fd4.png

两条黑色的椭圆分别是

,红色的线是它们的四条公切线,产生8个切点。从图上看,这8个切点在同一条圆锥曲线上,我们可以证明它正是二次点的叉乘
:设
上,则
点处的切线对应的I型二次线。如果
又在
上,那么
,即
。这一等式成立当且仅当
对应的切线与
相切。证毕。因此我们得到了以下结论:

为两条圆锥曲线,它们有4条公切线,产生8个切点,则存在一条圆锥曲线同时经过这8个点,它的代数表达式正是
(作为二次点的叉乘)。

要确定一条圆锥曲线需要5个点。现在我们有8个点,竟然能同时处在一条圆锥曲线上,这是十分神奇的!

如果

相切,那么
会退化成I型或II型二次线。

需要注意的是,上面

是两个二次点的叉乘。
如果换成两个二次线的叉乘,得到的将不是同一条圆锥曲线。从代数上,
。从几何上,如下图:

c31ffdbb60fe5386ed1f367fce86e079.png
这条圆锥曲线是我手工拟合的,因此并没有严格相切。

是两条圆锥曲线,它们有4个交点,在交点处有8条切线。则存在一条圆锥曲线同时与这8条直线相切,它的表达式正是
(作为二次线的叉乘)。

最后再来讨论III型二次点

与II型二次点
的叉乘
。与以上的方法类似,可以证明,
上当且仅当
关于
共轭。

如果把

作为度规,那么
作为(0,2)型张量可以简写为

另一个表述是:任意两点

以及它们到
的四条切线的4个切点,共6个点,在同一条二次线上。这条圆锥曲线正是
,如图:

425a5ac1ca80eb1db0d2c81bd204bc74.png

我们再考虑

的几个特殊情况。

1.如果

重合,那么退化成I型二次点与
叉乘的情景

2.如果直线

相切,那么上图中的
四点位于同一直线上(并且
重合),
退化成II型二次线
,如图:

507d29c43b2eb5d462a997d02d1abb41.png

3.如果

关于
共轭,那么
得到的是
分别作极线后的对称积。这是因为在把
作为度规后,
时得到

接下来简短地通过几个图来感受一下III型二次线

与II型二次线
的叉乘:

6466ab17def613eebeca485d39766e1e.png
这个图也是我手动拟合的

以及它的第2个特殊情况:

19fabe995449e94ea86daf13b7db3f48.png

,则

在以上的例子中,我们发现,有许多看似复杂的几何关系都可以用二次叉乘表示,特别是利用二次叉乘,我们能够用两条二次曲线生成新的二次曲线。这体现了二次叉乘的巨大威力。

对于两条III型二次点

,可以用如下方式作出一个
上的点:

任取一条

的切线
,与
交于两点
。分别作
处的切线,交于
。过
作某条关于
的切线,交
,则
上。如图:

4104a9a9863a1ab93f3944399c39375a.png

对II型和III型也是类似的:

692c4f608e9e31d3ce05f72313c7d559.png

接下来还剩一些简单的收尾。

我们可以对二次叉乘的可逆性进行讨论。所谓可逆性,就是指对于固定的

,映射
是否是满射(因为是同维空间的线性映射,因此,只要是满射就一定是一一映射)。一次叉乘是不可逆的,这是因为对于映射
,映射的像处在子空间
中。然而二次叉乘却并非如此。

我们已经讨论过二次叉乘的几何意义。从中可以看出,如果

是I型二次点,无论
是什么种类的二次点,
一定是I型或II型二次点,因此是不可逆的。如果
是II型二次点,
作为点集一定经过
两点,因此也是不可逆的。如果
是III型二次点,那么写出公式
。设
,那么:

作用于
的两边可以得到

右乘
再求迹可以得到

联立两式,可以得到

。忽略系数
,则有

。这便是
的逆。可以看到,这两个表达式竟然有些相似,区别主要在于后面的2。

因此我们的结论是:映射

可逆当且仅当
是可逆的。

如果

不可逆,那么就必定存在一类
使得
。结论是这样的:

如果

,那么
当且仅当
在一条直线上且是调和点列。

如果

,那么
当且仅当
,其中
为任意点矢。

为III型二次线(圆锥曲线),
为二次点(不要求它是什么型的),则可以构造和
同型的二次线
,称为“用
作配极变换”。具体而言,如果线
,那么
关于
的极点在
上。换句话说,通过用两个
对二次曲线作“夹心”,得到的效果是把那个二次曲线的每个元素(点/线)都变成了它关于
的极线/极点。自然,
也算作配极变换。

可以讨论的一个问题是,如果

是III型二次点且满足
,那么
具有怎样的性质?这个问题可以利用
来解答。因为
,因此这个表达式中只剩下了后一项
。也就是说,
关于
作配极变换形成的圆锥曲线与它们叉乘形成的圆锥曲线重合。

作为例题,我们可以利用本节的理论求解这个问题:

这是不是高考范围内最难的圆锥曲线问题,这题已经做到怀疑人生,大家有什么思路吗?

@心潮逐浪 同学给出的解答在心潮逐浪:二次点与二次线中给出。事实上,我这一节正是对他的理论的整理。(虽然我确信,仅仅通过二次叉乘,这道题的内容还没有被完全挖掘出来,要完美地解答它还需要搞出一套处理二次射影变换的理论)

目录:

质点:圆锥曲线题目的三维矢量解法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值