基于程函方程(EIkonal Equation)走时计算的偏移成像

实际上就是绕射扫描叠加原理,或者说是Kirchhoff偏移的简化形式。该成像方式速度快,内存占用低。可以用来做成像道集监控或者偏移速度分析。

参考论文:

Eikonal-equation-based elastic velocities reconstruction for multi-component seismic reflection data | Request PDF

原理如下:

 纵波理论数据成像实例:

 实际资料1,P波程函方程成像与RTM成像的对比:

实际资料2,P波程函方程成像与RTM成像的对比:

弹性波多分量数据成像原理:

弹性波理论数据成像实例:

模型:

数据:

成像结果:

东海实际数据成像:

Eikonal成像剖面:(a)初始PP;(b)初始PS; (c)反演后PP和(d)反演后PS

道集:

Eikonal成像道集:(a)初始PP;(b)初始PS; (c)反演后PP和(d)反演后PS

### 使用 MATLAB 编写求解方程的函数或程序 #### 单变量方程求解 对于单变量方程 \( f(x) = 0 \),MATLAB 提供了 `fzero` 函数来查找该方程的一个实数根。下面是一个具体的例子: ```matlab % 定义匿名函数 fun = @(x) cos(x) - x; % 调用 fzero 找到近似根,初始猜测为 0.5 root = fzero(fun, 0.5); disp(['The root is ', num2str(root)]); ``` 上述代码通过定义一个匿名函数并传递给 `fzero` 来找到方程 \( \cos(x) - x = 0 \) 的根[^3]。 --- #### 多元方程组求解 当需要解决多个变量组成的非线性方程组时,可以使用 `fsolve` 函数。以下是具体示例: ```matlab % 定义目标函数作为匿名函数 fun = @(x) [x(1)^2 + x(2)^2 - 4; exp(-x(1)) * sin(x(2)) - 0.5]; % 初始估计值 x0 = [1; 1]; % 解决方程组 options = optimset('Display', 'iter'); solution = fsolve(fun, x0, options); disp(solution); ``` 此代码片段展示了如何利用 `fsolve` 求解两个变量构成的非线性方程组。 --- #### 符号方法求解代数方程 如果希望获得精确解析解,则可采用符号工具箱中的 `solve` 命令。例如: ```matlab syms x y a b c real; eqn1 = a*x^2 + b*x + c == 0; % 定义二次方程 sol_x = solve(eqn1, x); % 求解关于 x 的表达式 disp(sol_x); ``` 这段脚本能够给出任意系数下的标准二次方程通解公式[^4]。 --- #### 微分方程数值与解析求解 针对常微分方程 (ODEs),既可以尝试获取显式的闭合形式解答也可以借助数值积分技术得到近似轨迹图象。比如简单的一阶 ODE 可写作如下样式: \[ \frac{dy}{dt} = t - y(t),\quad y(0)=1 \] 对应的 MATLAB 实现方式有两种路径——一种基于内置命令 `dsolve()` 进行理论推导;另一种则依赖于像 ode45() 这样的高效算法完成离散模拟过程[^2]: ##### 方法 A: DSOLVE 解析法 ```matlab syms y(t); ode = diff(y,t) == t-y; cond = y(0)==1; ysol = dsolve(ode, cond); disp(ysol); ``` ##### 方法 B: 数值仿真方案 ```matlab [t,y] = ode45(@(t,y) t-y, [0 1], 1); plot(t,y,'-o') xlabel('Time t'); ylabel('Solution y'); title('Numerical Solution of dy/dt=t-y with Initial Condition y(0)=1'); grid on; ``` 以上分别演示了解析建模以及动态行为预测两种不同视角下处理同一类问题的技术手段。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值