安装ubuntu22.04系统,配置国内源以及ssh远程登录

一、安装ubuntu22.04系统

原文连接:Ubuntu操作系统22.04版本安装教程-VMware虚拟机_wx63f86e949a470的技术博客_51CTO博客

1.点击界面左侧的开启此虚拟机,即可进入Ubuntu操作系统安装界面,点击​​Try or Install Ubuntu ​​即可开始安装

Ubuntu操作系统22.04版本安装教程-VMware虚拟机_Ubuntu_17

2.进入如下安装界面后,左侧选择框往下拉,选择中文简体,方便我们后续的安装,然后点击安装Ubuntu

Ubuntu操作系统22.04版本安装教程-VMware虚拟机_系统安装_18

3.这里默认设置为Chinese,点击继续即可

Ubuntu操作系统22.04版本安装教程-VMware虚拟机_VMware_19

4.默认正常安装,如果有低需求,可以选择最小安装,这也可节约电脑资源

Ubuntu操作系统22.04版本安装教程-VMware虚拟机_VMware_20

5.这里选择默认清除整个磁盘并安装Ubuntu,点击现在安装

Ubuntu操作系统22.04版本安装教程-VMware虚拟机_VMware_21

6.这里点击继续即可

Ubuntu操作系统22.04版本安装教程-VMware虚拟机_Ubuntu_22

7.国内网络安装,默认位置为Shanghai,点击继续即可

8.账户设置,可以根据个人习惯设置自己的姓名、计算机名、用户名、登录密码等,设置完点击继续即可

Ubuntu操作系统22.04版本安装教程-VMware虚拟机_系统安装_23

9.接下来等待系统安装即可

Ubuntu操作系统22.04版本安装教程-VMware虚拟机_VMware_24

10.系统安装完毕重启即可

11.重启后,输入密码进入系统,界面如下

Ubuntu操作系统22.04版本安装教程-VMware虚拟机_Ubuntu_26

 二、配置root账号

1、修改root账号密码,先输入普通用户密码,再设置root密码,输入两次即可:

$ sudo passwd root

 三、配置IP地址

1、先ip a查看电脑的网卡信息:

 $ su -      切换到root账号

# ip a          可得知网卡名称为ens33

2、输入 sudo vim /etc/netplan/01-network-manager-all.yaml,编辑yaml文件,如下配置网卡信息

# Let NetworkManager manage all devices on this system
network:
  ethernets:
    ens33:
      addresses: [192.168.184.129/24]
      gateway4: 192.168.184.2
      dhcp4: false
      nameservers:
          addresses : [114.114.114.114]
  version: 2
  renderer: networkd
根据实际需要依次设置enp3s0网卡的静态IP地址、网关、DNS,dhcp4设置为false,最后一行添加:renderer: networkd。注意缩进对齐,并且每个冒号后面要跟一个空格,否则会有问题。设置好后保存退出

3、输入命令netplan apply使配置生效,或者reboot重启系统

 # netplan apply

四、更换阿里云源

首先将source.list复制为source.list.bak备份。

# cp /etc/apt/sources.list  /etc/apt/sources.list.bak

# vim /etc/apt/sources.list

deb https://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb-src https://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse

deb https://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb-src https://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse

deb https://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb-src https://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse

# deb https://mirrors.aliyun.com/ubuntu/ jammy-proposed main restricted universe multiverse
# deb-src https://mirrors.aliyun.com/ubuntu/ jammy-proposed main restricted universe multiverse

deb https://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse
deb-src https://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse

本文为 Ubuntu 22.04 的阿里云镜像源列表。若为其他版本,将所有jammy更改为其他版本代号即可。
常用的Ubuntu版本代号如下:
Ubuntu 22.04:jammy
Ubuntu 20.04:focal
Ubuntu 18.04:bionic
Ubuntu 16.04:xenia

修改完成后保存source.list文件,需要执行命令后才能生效

# sudo apt update

五、配置ssh,root可以远程登录

安装ssh服务

# apt install -y openssh-server

# systemctl start sshd                启动服务

# update-rc.d ssh enable            ssh服务开机自启

配置root可远程登录,修改下面的配置内容,保存并退出

# vim /etc/ssh/sshd_config

PermitRootLogin yes

PasswordAuthentication yes

# systemctl restart sshd                重启生效

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值