文本匹配SimCSE模型代码详解以及训练自己的中文数据集

前言

在上一篇博客文本匹配中的示例代码中使用到了一个SimCSE模型,用来提取短文本的特征,然后计算特征相似度,最终达到文本匹配的目的。但是该示例代码中的短文本是用的英文短句,其实SimCSE模型也可以用于中文短文本的特征提取,本篇博客就基于苏沐剑发表于科学空间的中文任务还是SOTA吗?我们给SimCSE补充了一些实验博客中使用到的代码,来记录一下代码梳理的笔记,并且使用自己的数据集在这篇代码上进行训练。另外,关于这个模型的原理细节等,可以参考别的博主写的内容,还有就是作者的论文,这些会附在最后的参考链接。

代码详解

数据导入部分

数据导入部分的代码主要有三个步骤,(1)从txt中读取文本数据,常规操作,这里没什么可说的;

datasets = {
    '%s-%s' % (task_name, f):
    load_data('%s%s/%s.%s.data' % (data_path, task_name, task_name, f))
    for f in ['train', 'valid', 'test']
}

(2)将读取到的文本句子转换成id向量,同样也是常规操作;

def convert_to_ids(data, tokenizer, maxlen=64):
    """转换文本数据为id形式
    """
    a_token_ids, b_token_ids, labels = [], [], []
    for d in tqdm(data):
        token_ids = tokenizer.encode(d[0], maxlen=maxlen)[0]
        a_token_ids.append(token_ids)
        token_ids = tokenizer.encode(d[1], maxlen=maxlen)[0]
        b_token_ids.append(token_ids)
        labels.append(d[2])
    a_token_ids = sequence_padding(a_token_ids)
    b_token_ids = sequence_padding(b_token_ids)
    return a_token_ids, b_token_ids, labels

(3)第三步则是写了一个class,使用了一个生成器,完成数据batch读取。这里需要注意的是,每个batch中,同一个文本数据,输入了两次,一个batch中的两个一样的文本输入,由于模型最后一层的加入了dropout,模型输出结果是有些许差别的,这样有差别的输出,则可以互为label,这也是SimCSE模型巧妙的地方。

class data_generator(DataGenerator):
    """训练语料生成器
    """
    def __iter__(self, random=False):
        batch_token_ids = []
        for is_end, token_ids in self.sample(random):
            batch_token_ids.append(token_ids) ##同一条文本输入两次
            batch_token_ids.append(token_ids) ##同一条文本输入两次
            if len(batch_token_ids) == self.batch_size * 2 or is_end:
                batch_token_ids = sequence_padding(batch_token_ids)
                batch_segment_ids = np.zeros_like(batch_token_ids)
                batch_labels = np.zeros_like(batch_token_ids[:, :1])
                yield [batch_token_ids, batch_segment_ids], batch_labels
                batch_token_ids = []

模型定义部分

这个模型的定义其实很简单,就是用bert作为特征提取的基础模型,然后再bert模型输出的基础上加上一个dropout操作,就是代码中的pooling层,核心代码就是下面几行

bert = build_transformer_model(
            config_path,
            checkpoint_path,
            model=model,
            with_pool='linear',
            dropout_rate=dropout_rate
        )
outputs, count = [], 0
while True:
	try:
      	output = bert.get_layer(
                'Transformer-%d-FeedForward-Norm' % count
           ).output
        outputs.append(output)
        count += 1
    except:
        break
output = bert.output
# 最后的编码器
encoder = Model(bert.inputs, output) 

模型的损失函数

模型的损失函数是所有代码中最难理解的部分,虽然代码只有十几行,但是最需要花费时间去理解的。
在阐述这个SimCSE模型的损失函数代码之前,首先要搞清楚,这个模型是要解决什么问题,其目的主要是为了提取短文本的特征,使得相似的句子,提取出来的特征距离更近,不同语义的句子,特征距离越远,这样使得提取出来的文本特征更具有辨识度,和人脸识别原理很类似,这就是对比学习模型系列想要达到的目的。

在了解了对比学习的大致原理之后,再来看代码,下面是解释

idxs = K.arange(0, K.shape(y_pred)[0])

这行代码就是模型输出的一个维度(模型输入的batchsize),构建一个索引,比如,模型输入batchsize为6,那idxs则就是[0,1,2,3,4,5]

idxs_1 = idxs[None, :]

这就是给idxs增加一个维度,使其变成[[0,1,2,3,4,5]]

idxs_2 = (idxs + 1 - idxs % 2 * 2)[:, None]

这行代码比较关键,目的是让idxs向量中数值是奇数的赋值为它的前一个数,数值为偶数的则赋值为它后一个索引值,这个一前一后的赋值,就是它相似度最大的索引值(排除自己)。这里需要解释一下的是,这里每个索引值背后代表的是SimCSE模型输出的一个个的提取到的文本特征向量,维度是1*768,和bert模型输出应该是一样的维度。而这里为什么要取一前一后的赋值索引,这因为数据导入时候,在每个batch里面同一条文本被相邻的导入了两次,那么这两个相邻的文本,经过SimCSE模型提取到的特征也是最为相似的,其相似度要接近1,而每个batch里面不相邻的模型输出,则应该是0,这样模型才能达到收敛的效果

y_true = K.equal(idxs_1, idxs_2)
y_true = K.cast(y_true, K.floatx())

这两行代码就是可以将y_true变成一个batchsize * batchsize大小的相似度矩阵,相似度的规则和上面描述的一样

生成y_true的中间值,其实可以打印出来看看,设定 y_pred为[‘a’, ‘a’, ‘b’, ‘b’, ‘c’, ‘c’]时候,整个调试代码如下:

from bert4keras.backend import keras, K


import tensorflow as tf

y_pred = ['a', 'a', 'b', 'b', 'c', 'c']

session = tf.Session()
# 张量转化为ndarray

idxs = K.arange(0, K.shape(y_pred)[0])
array = session.run(idxs)
print('1', array)

idxs_1 = idxs[None, :]
array = session.run(idxs_1)
print('2', array)


idxs_2 = (idxs + 1 - idxs % 2 * 2)[:, None]
array = session.run(idxs_2)
print('3', array)

y_true = K.equal(idxs_1, idxs_2)
array = session.run(y_true)
print('4', array)

y_true = K.cast(y_true, K.floatx())

array = session.run(y_true)
print('5',array)
y_pred = K.l2_normalize(y_pred, axis=1)
similarities = K.dot(y_pred, K.transpose(y_pred))
similarities = similarities - tf.eye(K.shape(y_pred)[0]) * 1e12
similarities = similarities * 20

这几行代码就是计算SimCSE模型预测出来每个batch里的每个文本特征之间的相似度,特征越相似,K.dot(y_pred, K.transpose(y_pred)),特征向量点乘越接近1,similarities = similarities - tf.eye(K.shape(y_pred)[0]) * 1e12,则是为了消除相似度矩阵对角线上的元素,即同一条特征自身与自身点乘的结果。

loss = K.categorical_crossentropy(y_true, similarities, from_logits=True)

最后用交叉熵损失来定义模型最后的输出损失

训练自己的数据

在这个模型需要训练自己的数据,首先是环境搭建:

jieba-0.42.1
bert4keras-0.10.5
keras-2.3.1
cudatoolkit 10.0.130
cudnn  7.6.0 
tensorflow-gpu  1.13.1

然后准备数据集,格式如下:

在这里插入图片描述

txt这个标签,0,1可以有,也可以没有

接着就是下载预训练模型,bert的模型,下载之后,修改eval.py中的数据集和预训练模型的路径,将其修改成自己的路径
在这里插入图片描述
最后运行代码训练模型即可得到预测结果

在这里插入图片描述

参考链接

SimCSE论文及源码解读
SimCSE的loss实现源码解读
SimCSE: Simple Contrastive Learning of Sentence Embeddings
princeton-nlp/SimCSE

  • 4
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 23
    评论
Yov5是一种目标检测算法,它可以用于训练自己的数据集。下面是详细的步骤: 1. 数据集准备:首先,你需要准备自己的数据集。这包括收集并标记图像,为每个目标对象创建边界框,并将它们与相应的类别关联起来。确保你的数据集具有足够的样本和类别的多样性。 2. 数据集划分:将整个数据集划分为训练集和验证集。训练集用于模型训练,验证集用于评估模型的性能。 3. 安装Yolov5:在训练之前,你需要安装Yolov5。你可以从官方的GitHub仓库中获取代码,并按照说明进行安装。 4. 配置模型:打开Yolov5的配置文件,根据你的需要进行调整。你可以设置一些超参数,如学习率、批量大小等。 5. 数据转换:将数据集转换为Yolov5所需的格式。Yolov5使用标签文件来存储每个图像的边界框和类别信息。你可以使用工具如labelImg来生成标签文件。 6. 训练模型:使用Yolov5提供的训练脚本开始训练模型。你需要指定训练集和验证集的路径,还可以选择一些训练参数。训练过程可能需要一段时间,具体取决于你的数据集规模和硬件性能。 7. 模型评估:在训练完成后,你可以使用验证集对模型进行评估。Yolov5提供了相应的脚本来计算模型的精度、召回率等指标。 8. 模型推理:一旦模型训练和评估完成,你可以使用训练好的模型进行目标检测。将测试图像输入到模型中,它将返回检测到的目标对象和其边界框的位置。 这些是训练自己的数据集使用Yolov5的基本步骤。当然,具体实施过程中可能还会涉及其他细节和调整。你可以参考Yolov5的文档和官方示例来获取更多详细信息。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肥宅程序员aka不会游泳的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值