DAMA数据管理知识体系(第15章 数据管理成熟度评估)

  • 课本内容
    • 15.1 引言
      • 概要
        • 能力成熟度评估(Capability Maturity Assessment,CMA)是一种基于能力成熟度模型(Capability Maturity Model,CMM)框架的能力提升方案,描述了数据管理能力初始状态发展到最优化的过程。
        • 成熟度模型
          • 0级
            • 无能力级。
              • 在数据管理中,管理活动或正式企业流程处于无组织的状态。很少有组织处在0级阶段,这个级别在成熟度模型中是为了定义才被设定的
          • 1级
            • 初始级或临时级,成功取决于个人的能力
              • 使用有限的工具集进行通用的数据管理,很少或根本没有治理活动。数据处理高度依赖于少数专家,角色和责任在各部门中分开定义。每个数据所有者自主接收、生成和发送数据控件(如果有的话)的应用不一致。管理数据的解决方案是有限的。数据质量问题普遍存在,但无法得到解决,基础设施支持处于业务单元级别。
              • 评估标准可能包括对任意一个流程进行控制,如记录数据质量问题。
          • 2级
            • 可重复级:制定了最初级的流程规则。
              • 有一致的工具和角色定义来支持流程执行。在2级中,组织开始使用集中化的工具,并为数据管理提供更多的监控手段。角色的定义和流程并不全依赖于特定专家。组织对数据质量问题和概念有认识,开始认识到主数据和参考数据的概念。
              • 评估标准可能包括组件中的正式角色定义,如职位描述、流程文档以及利用工具集的能力。
          • 3级
            • 已定义级:已建立标准并使用。
              • 第3级将引入可扩展的数据管理流程将其制度化,并将数据管理视为一种组织促成因素。其特点包括在组织中的数据复制受到控制,总体数据质量普遍提高,有协调一致的政策定义和管理。越正式的流程定义越能显著减少人工干预,这样伴随着集中化的设计流程,意味着流程的结果更加可预测。
              • 评估标准可能包括制定数据管理政策、可扩展过程的使用以及数据模型和系统控制的一致性。
          • 4级
            • 已管理级:能力可以被量化和控制。
              • 从1~3级增长中获得的经验积累使组织能够在即将开展新项目和任务时预测结果,并开始管理与数据相关的风险,数据管理包括一些绩效指标。4级的特点包括从桌面到基础设施的数据管理工具标准化,以及结构良好的集中规划和治理功能。此级别的机构在数据质量和全组织数据管理能力(如端到端的数据审核)等方面有显著性提高。
              • 评估标准可能包括与项目成功相关的指标、系统的操作指标和数据质量指标。
          • 5级
            • 优化级:能力提升的目标是可量化的。
              • 当数据管理实践得到优化时,由于流程自动化和技术变更管理,它们是高度可预测的,这个成熟度级别的组织会更关注于持续改进。在第5级,工具支持跨流程查看数据。控制数据的扩散防止不必要的复制,使用容易理解的指标来管理和度量数据质量和过程。
              • 评估标准可能包括变更管理组件和流程改进的一些度量指标
        • 数据管理成熟度评估(Data Man
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值