【论文精读】Introductory tutorial agent-based modeling and simulation

Introductory tutorial: agent-based modeling and simulation

Charles M. Macal Michael J. North

What’s ABMS? 什么是ABMS?

Agent-based modeling and simulation (ABMS) is an approach to modeling systems comprised of individual, autonomous, interacting “agents.”

What’s the structure of an ABM? ABM的结构是什么?

A typical agent-based model has three elements:

  1. Agents, their attributes and behaviors. (features: Autonomy\ Modularity \ Sociality \ Conditionality )

  2. Agent relationships and methods of interaction. An underlying topology of connectedness defines
    how and with whom agents interact.

The primary issues of modeling agent interactions are specifying who is, or could be, connected to who, and the dynamics governing the mechanisms of the interactions.

Common topology:

  1. Soup. A nonspatial model in which agents have no locational attribute.

  2. Grid or lattice. Cellular automata represent agent interaction patterns and available local information by a grid or lattice; cells immediately surrounding an agent are its neighborhood

  3. Euclidean space. Agents roam in 2D or 3D spaces.

  4. Geographic Information System (GIS). Agents move over realistic geo-spatial landscapes

  5. Networks. Networks may be static (links pre-specified) or dynamic (links determined endogenously).

  6. Agents’ environment. Agents live in and interact with their environment in addition to other agents.

How to do ABM design? 如何设计ABM?

Table 2: Questions to Ask Before Developing an Agent-based Model
Model Purpose and Value-added of Agent-based Modeling: What specific problem is the model being developed to address? What specific questions should the model answer? What kind of information should the model provide to help make or support a decision? Why might agent-based modeling be a desirable approach? What value-added does agent-based modeling bring to the problem that other modeling approaches cannot bring?
All About Agents: What should the agents be in the model? Who are the decision makers in the system? What are the entities that have behaviors? Where might the data come from, especially on agent behaviors, for such a model?
Agent Data: What data on agents is simply descriptive (static attributes)? What agent attributes are calculated endogenously by the model and updated for the agents (dynamic attrib utes)? What is the agents’ environment? How do the agents interact with the environment? Is agent mobility through space an important consideration?
Agent Behaviors: What agent behaviors are of interest? What decisions do the agents make and what information is required to make such decisions? What behaviors are being acted upon? What actions are being taken by the agents? How would we represent the agent behaviors? By If-Then rules? By adaptive probabilities, such as in rein forcement learning? By regression models or neural networks?
Agent Interactions: How do the agents interact with each other? How do the agents interact with the environment? How expansive or focused are agent interactions?
Agent Recap: How do we design a set of experiments to explore the importance of uncertain behaviors, data and parameters? How might we validate the model, especially the agent behaviors and the agent interaction mechanisms?

Why and When ABMS? 为什么使用ABMS? 何时使用?

 When the problem has a natural representation as being comprised of agents
 When there are decisions and behaviors that can be well-defined
 When it is important that agents have behaviors that reflect how individuals actually behave (if known)
 When it is important that agents adapt and change their behaviors
 When it is important that agents learn and engage in dynamic strategic interactions
 When it is important that agents have dynamic relationships with other agents, and agent relationships form, change, and decay
 When it is important to model the processes by which agents form organizations, and adaptation and learning are important at the organization level
 When it is important that agents have a spatial component to their behaviors and interactions
 When the past is no predictor of the future because the processes of growth and change are dynamic
 When scaling-up to arbitrary levels is important in terms of the number of agents, agent interactions and agent states
 When process structural change needs to be an endogenous result of the model, rather than an input to the model

欢迎关注二幺子的知识输出通道:

avatar

已标记关键词 清除标记
相关推荐
The Verilog language is a hardware description language that provides a means of specifying a digital system at a wide range of levels of abstraction. The language sup- ports the early conceptual stages of design with its behavioral level of abstraction, and the later implementation stages with its structural abstractions. The language includes hierarchical constructs, allowing the designer to control a description's complexity. Verilog was originally designed in the winter of 1983/84 as a proprietary verifica- tion/simulation product. Later, several other proprietary analysis tools were developed around the language, including a fault simulator and a timing analyzer. More recently, Verilog has also provided the input specification for logic and behavioral synthesis tools. The Verilog language has been instrumental in providing consistency across these tools. The language was originally standardized as IEEE standard #1364-1995. It has recently been revised and standardized as IEEE standard #1364-2001. This book presents this latest revision of the language, providing material for the beginning student and advanced user of the language. It is sometimes difficult to separate the language from the simulator tool because the dynamic aspects of the language are defined by the way the simulator works. Fur- ther, it is difficult to separate it from a synthesis tool because the semantics of the lan- guage become limited by what a synthesis tool allows in its input specification and produces as an implementation. Where possible, we have stayed away from simulator- and synthesis-specific details and concentrated on design specification. But, we have included enough information to be able to write working executable models. xvi The VerUog Hardware Description Language The book takes a tutorial approach to presenting the language. Indeed, we start with a tutorial introduction that presents, via examples, the major features of the lan- guage and the prev
The advent of widespread fast computing has enabled us to work on more complex problems and to build and analyze more complex models. This book provides an introduction to one of the primary methodologies for research in this new field of knowledge. Agent-based modeling (ABM) offers a new way of doing science: by conducting computer-based experiments. ABM is applicable to complex systems embedded in natural, social, and engineered contexts, across domains that range from engineering to ecology. An Introduction to Agent-Based Modeling offers a comprehensive description of the core concepts, methods, and applications of ABM. Its hands-on approach -- with hundreds of examples and exercises using NetLogo -- enables readers to begin constructing models immediately, regardless of experience or discipline. The book first describes the nature and rationale of agent-based modeling, then presents the methodology for designing and building ABMs, and finally discusses how to utilize ABMs to answer complex questions. Features in each chapter include step-by-step guides to developing models in the main text; text boxes with additional information and concepts; end-of-chapter explorations; and references and lists of relevant reading. There is also an accompanying website with all the models and code. Table of Contents Chapter 0 Why Agent-Based Modeling? Chapter 1 What Is Agent-Based Modeling? Chapter 2 Creating Simple Agent-Based Models Chapter 3 Exploring and Extending Agent-Based Models Chapter 4 Creating Agent-Based Models Chapter 5 The Components of Agent-Based Modeling Chapter 6 Analyzing Agent-Based Models Chapter 7 Verification, Validation, and Replication Chapter 8 Advanced Topics and Applications Appendix: The Computational Roots of Agent-Based Modeling
Fundamentals of Power Electronics, Second Edition, is an up-to-date and authoritative text and reference book on power electronics. This new edition retains the original objective and philosophy of focusing on the fundamental principles, models, and technical requirements needed for designing practical power electronic systems while adding a wealth of new material. Improved features of this new edition include: A new chapter on input filters, showing how to design single and multiple section filters; Major revisions of material on averaged switch modeling, low-harmonic rectifiers, and the chapter on AC modeling of the discontinuous conduction mode; New material on soft switching, active-clamp snubbers, zero-voltage transition full-bridge converter, and auxiliary resonant commutated pole. Also, new sections on design of multiple-winding magnetic and resonant inverter design; Additional appendices on Computer Simulation of Converters using averaged switch modeling, and Middlebrook's Extra Element Theorem, including four tutorial examples; and Expanded treatment of current programmed control with complete results for basic converters, and much more. This edition includes many new examples, illustrations, and exercises to guide students and professionals through the intricacies of power electronics design. Fundamentals of Power Electronics, Second Edition, is intended for use in introductory power electronics courses and related fields for both senior undergraduates and first-year graduate students interested in converter circuits and electronics, control systems, and magnetic and power systems. It will also be an invaluable reference for professionals working in power electronics, power conversion, and analogue and digital electronics.
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页