波偏微分方程的求解(2)

在这里插入图片描述
在这里插入图片描述

t = 0 :0.1:1;
x = 0:0.1:1;
L = 1
a = 1
for xi = x
u= sin(pi * xi / L) * cos(pi * a * t / L) + 0.5 *sin(3 * pi * xi / L) * cos(3 * pi * a * t / L);
plot (t, u);
hold on;
end

在这里插入图片描述

t = 0 :0.1:2;
x = 0:0.1:1;
L = 1
a = 1
for xi = x
u= sin(pi * xi / L) * cos(pi * a * t / L) + 0.5 *sin(3 * pi * xi / L) * cos(3 * pi * a * t / L);
plot (t, u);
hold on;
end

在这里插入图片描述

t = 0 :0.1:3;
x = 0:0.1:1;
L = 1
a = 1
for xi = x
u= sin(pi * xi / L) * cos(pi * a * t / L) + 0.5 *sin(3 * pi * xi / L) * cos(3 * pi * a * t / L);
plot (t, u);
hold on;
end

在这里插入图片描述

t = 0 :0.1:1;
x = 0:0.1:1;
L = 2
a = 1
for xi = x
u= sin(pi * xi / L) * cos(pi * a * t / L) + 0.5 *sin(3 * pi * xi / L) * cos(3 * pi * a * t / L);
plot (t, u);
hold on;
end

在这里插入图片描述

t = 0 :0.1:2;
x = 0:0.1:1;
L = 2
a = 1
for xi = x
u= sin(pi * xi / L) * cos(pi * a * t / L) + 0.5 *sin(3 * pi * xi / L) * cos(3 * pi * a * t / L);
plot (t, u);
hold on;
end

在这里插入图片描述

t = 0 :0.1:4;
x = 0:0.1:1;
L = 2
a = 1
for xi = x
u= sin(pi * xi / L) * cos(pi * a * t / L) + 0.5 *sin(3 * pi * xi / L) * cos(3 * pi * a * t / L);
plot (t, u);
hold on;
end

在这里插入图片描述

T h e   s o l u t i o n   i s   p e r i o d i c   i n   t i m e   w i t h   a   p e r i o d   o f   T = 2 L α The~solution ~is ~periodic ~in~ time~ with~ a~period ~of~ T=\frac{2L}{\alpha} The solution is periodic in time with a period of T=α2L

clear all,clc;
a=0:.01:1;
[x,t]=meshgrid(a);
u=0.5.*(sin(pi * (x+t)) + 0.5 * sin(3 * pi * (x+t))+sin(pi * (x-t)) + 0.5 * sin(3 * pi * (x-t)));
figure(1)
mesh(x,t,u);
axis([0 1 0 1 -1 1]);
title('u=0.5.*((x+t).*exp(-(x+t).^2)+(x-t).*exp(-(x-t).^2)); mesh')
colormap cool
colorbar

在这里插入图片描述

clear all,clc;
a=0:.01:2;
[x,t]=meshgrid(a);
u=0.5.*(sin(pi * (x+t)) + 0.5 * sin(3 * pi * (x+t))+sin(pi * (x-t)) + 0.5 * sin(3 * pi * (x-t)));
figure(1)
mesh(x,t,u);
axis([0 2 0 2 -2 2]);
title('u=0.5.*((x+t).*exp(-(x+t).^2)+(x-t).*exp(-(x-t).^2)); mesh')
colormap cool
colorbar

在这里插入图片描述
波偏微分方程的求解(1)
Octave online

欢迎关注二幺子的知识输出通道:
avatar

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页