NLP知识点 - perplexity 困惑度

(一) Perplexity

困惑度(Perplexity,缩写为PPL)是衡量语言模型好坏的一个常用指标。

语言模型(language model)是用来预测句子中的next word的概率分布(probability distribution),并计算一个句子的概率。一个好的语言模型,应该给well-written 的句子更高的生成概率,阅读这些句子不应该让人感到困惑。

困惑度的定义:

perplexity(W)=P(w1w2...wn)−1Nperplexity(W)=P(w_1w_2...w_n)^{-\frac{1}{N}}perplexity(W)=P(w1w2...wn)N1
在语言模型在测试集W={ w1,w2,...,wN}W=\{w_1, w_2, ..., w_N\}W={ w1,w2,...,wN}上的困惑度,是测试集的逆概率,然后用单词数量进行归一化。

核心思想是,句子的概率越大,其困惑度越小,说明语言模型越好。

(二)Perplexity with Example

假设我们的语言模型,词表只有[“a”, “the”, “red”, “fox”, “dog”, “.”] 六个词。

下面计算“a red fox.”这句话WWW的概率。

P(W)=P(w1w2...wn)P(W)=P(w_1w_2...w_n)P(W)=P(w1w2...wn)
所以:
P(a red fox.)=P(a)∗P(red∣a)∗P(fox∣a red)∗P(.∣a red fox)P(a\ red\ fox.)=P(a)*P(red|a)*P(fox|a\ red)*P(.|a \ red\ fox)P(a red fox.)=P(a)P(reda)P(foxa red)P(.∣a red fox)

假设:
句子中首字的概率如下:
P(w1=a)=0.4P(w_1=a)=0.4P(w1=a)=0.4
P(w1=the)=0.3P(w_1=the)=0.3P(

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值