NLP知识点 - perplexity 困惑度

(一) Perplexity

困惑度(Perplexity,缩写为PPL)是衡量语言模型好坏的一个常用指标。

语言模型(language model)是用来预测句子中的next word的概率分布(probability distribution),并计算一个句子的概率。一个好的语言模型,应该给well-written 的句子更高的生成概率,阅读这些句子不应该让人感到困惑。

困惑度的定义:

p e r p l e x i t y ( W ) = P ( w 1 w 2 . . . w n ) − 1 N perplexity(W)=P(w_1w_2...w_n)^{-\frac{1}{N}} perplexity(W)=P(w1w2...wn)N1
在语言模型在测试集 W = { w 1 , w 2 , . . . , w N } W=\{w_1, w_2, ..., w_N\} W={w1,w2,...,wN}上的困惑度,是测试集的逆概率,然后用单词数量进行归一化。

核心思想是,句子的概率越大,其困惑度越小,说明语言模型越好。

(二)Perplexity with Example

假设我们的语言模型,词表只有[“a”, “the”, “red”, “fox”, “dog”, “.”] 六个词。

下面计算“a red fox.”这句话 W W W的概率。

P ( W ) = P ( w 1 w 2 . . . w n ) P(W)=P(w_1w_2...w_n) P(W)=P(w1w2...wn)
所以:
P ( a   r e d   f o x . ) = P ( a ) ∗ P ( r e d ∣ a ) ∗ P ( f o x ∣ a   r e d ) ∗ P ( . ∣ a   r e d   f o x ) P(a\ red\ fox.)=P(a)*P(red|a)*P(fox|a\ red)*P(.|a \ red\ fox) P(a red fox.)=P(a)P(reda)P(foxa red)P(.∣a red fox)

假设:
句子中首字的概率如下:
P ( w 1 = a ) = 0.4 P(w_1=a)=0.4 P(w1=a)=0.4
P ( w 1 = t h e ) = 0.3 P(w_1=the)=0.3 P(w1=the)=0.3
P ( w 1 = r e d ) = 0.15 P(w_1=red)=0.15 P(w1=red)=0.15
P ( w 1 = f o x ) = 0.08 P(w_1=fox)=0.08 P(w1=fox)=0.08
P ( w 1 = d o g ) = 0.07 P(w_1=dog)=0.07 P(w1=dog)=0.07
P ( w 1 = . ) = 0 P(w_1=.)=0 P(w1=.)=0

所以 P ( a ) = 0.4 P(a)=0.4 P(a)=0.4

然后,假设我们的模型给出了前一个词为a,后一个词的概率分布:
P ( w 2 = a ∣ a ) = 0.01 P(w_2=a|a)=0.01 P(w2=aa)=0.01
P ( w 2 = t h e ∣ a ) = 0.01 P(w_2=the|a)=0.01 P(w2=thea)=0.01
P ( w 2 = r e d ∣ a ) = 0.27 P(w_2=red|a)=0.27 P(w2=reda)=0.27
P ( w 2 = f o x ∣ a ) = 0.3 P(w_2=fox|a)=0.3 P(w2=foxa)=0.3
P ( w 2 = d o g ∣ a ) = 0.4 P(w_2=dog|a)=0.4 P(w2=doga)=0.4
P ( w 2 = . ∣ a ) = 0.01 P(w_2=.|a)=0.01 P(w2=.∣a)=0.01

所以 P ( r e d ∣ a ) = 0.27 P(red|a)=0.27 P(reda)=0.27

类似地,假设我们的模型给出了前两个词为a red,第三个词的概率分布;以及前三个词为a red fox,第四个词的概率分布:
P ( w 3 = a ∣ a   r e d ) = 0.02 P(w_3=a|a\ red)=0.02 P(w3=aa red)=0.02
P ( w 3 = t h e ∣ a   r e d ) = 0.03 P(w_3=the|a\ red)=0.03 P(w3=thea red)=0.03
P ( w 3 = r e d ∣ a   r e d ) = 0.03 P(w_3=red|a\ red)=0.03 P(w3=reda red)=0.03
P ( w 3 = f o x ∣ a   r e d ) = 0.55 P(w_3=fox|a\ red)=0.55 P(w3=foxa red)=0.55
P ( w 3 = d o g ∣ a   r e d ) = 0.22 P(w_3=dog|a\ red)=0.22 P(w3=doga red)=0.22
P ( w 3 = . ∣ a   r e d ) = 0.15 P(w_3=.|a\ red)=0.15 P(w3=.∣a red)=0.15
以及
P ( w 4 = a ∣ a   r e d   f o x ) = 0.02 P(w_4=a|a\ red\ fox)=0.02 P(w4=aa red fox)=0.02
P ( w 4 = t h e ∣ a   r e d   f o x ) = 0.03 P(w_4=the|a\ red\ fox)=0.03 P(w4=thea red fox)=0.03
P ( w 4 = r e d ∣ a   r e d   f o x ) = 0.03 P(w_4=red|a\ red\ fox)=0.03 P(w4=reda red fox)=0.03
P ( w 4 = f o x ∣ a   r e d   f o x ) = 0.02 P(w_4=fox|a\ red\ fox)=0.02 P(w4=foxa red fox)=0.02
P ( w 4 = d o g ∣ a   r e d   f o x ) = 0.11 P(w_4=dog|a\ red\ fox)=0.11 P(w4=doga red fox)=0.11
P ( w 4 = . ∣ a   r e d   f o x ) = 0.79 P(w_4=.|a\ red\ fox)=0.79 P(w4=.∣a red fox)=0.79

所以 P ( a   r e d   f o x . ) = P ( a ) ∗ P ( r e d ∣ a ) ∗ P ( f o x ∣ a   r e d ) ∗ P ( . ∣ a   r e d   f o x ) = 0.4 ∗ 0.27 ∗ 0.55 ∗ 0.79 = 0.0469 P(a\ red\ fox.)=P(a)*P(red|a)*P(fox|a\ red)*P(.|a \ red\ fox)=0.4*0.27*0.55*0.79=0.0469 P(a red fox.)=P(a)P(reda)P(foxa red)P(.∣a red fox)=0.40.270.550.79=0.0469

此时,可以看到生成的这句话的概率为0.0469。我们是否可以直接比较这句话的概率与当前语言模型生成的其他句子的概率,来判定生成句子的好坏呢?答案是否定的,因为句子的最终概率是单词概率连乘得到的,所以随着句子长度的增加,概率会越来越小。所以我们想要找一个不受句子长度影响的衡量方式。

考虑到句子的概率是连乘得到的,所以这个问题可以通过计算几何平均来解决。此时,我们将利用句子中单词的数量 n n n来对句子概率进行归一化:
P n o r m ( W ) = P ( W ) n P_{norm}(W)=\sqrt [n] {P(W)} Pnorm(W)=nP(W)

此时,a red fox. 这句话的归一化概率为
P n o r m ( a   r e d   f o x . ) = P ( a   r e d   f o x . ) 4 = P ( a   r e d   f o x . ) 1 / 4 = 0.465 P_{norm}(a\ red\ fox.)=\sqrt [4] {P(a\ red\ fox.)}=P(a\ red\ fox.)^{1/4}=0.465 Pnorm(a red fox.)=4P(a red fox.) =P(a red fox.)1/4=0.465

现在,所有的概率都被归一化了,可以比较不同长度句子的概率了。

进一步地,困惑度这个概念被提出来,他是归一化概率的倒数。即:

P e r p l e x i t y = 1 P n o r m ( W ) = 1 P ( W ) 1 n = 1 P ( w ) 1 n Perplexity = \frac{1}{P_{norm}(W)}=\frac{1}{P(W)^\frac{1}{n}}={\frac{1}{P(w)}^{\frac{1}{n}}} Perplexity=Pnorm(W)1=P(W)n11=P(w)1n1

因为是概率的倒数,所以困惑度越低,句子概率越高,语言模型就越好。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 自然语言处理(Natural Language Processing,简称NLP)是计算机科学与人工智能领域的一个重要研究方向,目的是让计算机能够理解、处理和生成人类的自然语言。NLP-100例是一份经典的NLP问题集合,包含了各种与自然语言处理相关的问题和挑战。 这份NLP-100例涵盖了从基础的文本处理到更高级的自然语言理解和生成的问题。例如,其中包括了文本预处理、词频统计、语法分析、词性标注、实体识别、情感分析、机器翻译等任务。 NLP-100例的目的是帮助研究者和开发者更好地理解NLP领域的核心问题和技术,同时提供一些典型的案例和数据集供实践和研究使用。通过完成这些例题,可以锻炼自己在NLP领域的能力和技术,提高对自然语言的处理和理解能力。 此外,NLP-100例也为研究者提供了一个可以与其他人交流和探讨的平台。研究者可以使用相同的数据集和问题进行实验和评估,从而更好地了解NLP技术的优劣和进展。 总之,NLP-100例是一个对NLP进行实践和研究的重要资源。通过解决这些例题,可以深入理解自然语言处理的基础和技术,掌握各种NLP任务的方法和技巧。同时,它也是一个促进交流和合作的平台,为NLP研究者提供了一个共同的基础和语言。 ### 回答2: 自然语言处理(Natural Language Processing,简称NLP)是研究计算机与人类自然语言之间的交互的一门学科。NLP-100例指的是日本的一个NLP入门教程,包含了100个常见的NLP问题和对应的解答。 NLP-100例涵盖了从文本处理到语义理解等多个方面的问题。其中,一些例子包括:文本的分词、词性标注、句法分析、语义角色标注和文本分类等。 以分词为例,分词是将一段连续的文本分割成词语的过程。在NLP-100例中,可以通过使用Python中的分词工具NLTK(Natural Language Toolkit)来实现分词功能。 另外,对于文本的词性标注,NLP-100例提供了使用POS(Part-Of-Speech)标记对文本中的每个词进行词性标注的方法。可以使用NLTK提供的POS标注工具来实现。 此外,NLP-100例还包括了语义角色标注的问题,语义角色标注是为了确定句子中的谓语动词所承担的语义角色,如施事者、受事者、时间等。可以使用Stanford CoreNLP工具包来实现语义角色标注。 最后,NLP-100例还介绍了文本分类的问题,文本分类是将文本划分到预定义的类别中。可以使用机器学习算法,如朴素贝叶斯或支持向量机(SVM)等来进行文本分类。 通过学习NLP-100例,我们可以了解到自然语言处理的基本方法和技术,并且可以利用这些技术来解决相关的自然语言处理问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值