NLP基础知识点:困惑度(Perplexity)

本文深入探讨了困惑度在评估语言模型中的作用,它与熵的概念相联系,用以衡量语言模型预测句子的概率。通过举例和数学公式,解释了困惑度如何体现语言模型的性能,以及其在实际应用中与NLP任务性能的关系。同时介绍了交叉熵在模型比较中的作用,以及如何通过交叉熵来估算模型的精度。文章以《华尔街日报》的语料库为例,展示了n-gram模型对困惑度的影响,并强调了困惑度虽是性能指标,但需结合实际任务的端到端评估来验证模型效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇内容翻译自Speech and Language Processing. Daniel Jurafsky & James H. Martin.
链接:https://web.stanford.edu/~jurafsky/slp3/
不愧是自然语言处理领域的圣经,读起来流畅自然,以后还是要多读经典。


困惑度(Perplexity, PP)用来评估一个语言模型的好坏。
我们知道语言模型是用来计算一个句子的概率,但实际中,我们不会使用原始的概率作为语言模型的度量。

1. 公式定义

给定测试集 W = w 1 w 2 . . . w N W = w_1w_2...w_N W=w1w2..

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值