两平面平行但不重合的条件是_____【同步练习】高一高中数学必修22.2.2 平面与平面平行的判定...

c9bf7441c12c397a65119f46d8cd626c.gif一.选择题(共6小题,每小题8分,共48分)

1、已知直线a、b与平面α、β、γ,下列条件中能推出α∥β的是(  )

A、a⊥α且a⊥βB、α⊥γ且β⊥γC、a⊂α,b⊂β,a∥bD、a⊂α,b⊂α,a∥β,b∥β

正确答案

A

解析

解:选项A,根据垂直于同一直线的两个平面平行,可知正确;

选项B,α⊥γ,β⊥γ可能推出α、β 相交,所以B不正确;

选项C,a⊂α,b⊂β,a∥b,α与β 可能相交,故不正确;

选项D,a⊂α,b⊂α,a∥β,b∥β,如果a∥b推出α、β 相交,所以D不正确;

故选:A.

2、平面α与平面β平行的条件可以是(  )

A、α内有无穷多条直线与β平行B、直线a∥α,a∥βC、直线a⊂α,直线b⊂β,且a∥β,b∥αD、α内的任何直线都与β平行

正确答案

D

解析

解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.

当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选 B.

当直线a⊂α,直线b⊂β,且a∥β 时,直线a 和直线 b可能平行,也可能是异面直线,故不选 C.

 当α内的任何直线都与β 平行时,由两个平面平行的定义可得,这两个平面平行,

故选:D.

3、已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:

①若m⊥α,m⊂β,则α⊥β;

②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;

③m⊂α,n⊂α,m、n是异面直线,那么n与α相交;

④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.

其中正确的命题是(  )

A、①②B、②③C、③④D、①④

正确答案

D

解析

解:①若m⊥α,m⊂β,则α⊥β;这符合平面垂直平面的判定定理,正确的命题.

②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;可能n∥m,α∩β=l.错误的命题.

③m⊂α,n⊂α,m、n是异面直线,那么n与α相交;题目本身错误,是错误命题.

④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题.

故选:D.

4、对于不重合的两个平面α与β,给定下列条件:

①存在平面γ,使得α,β都平行于γ

②存在平面γ,使得α,β都垂直于γ;

③α内有不共线的三点到β的距离相等;

④存在异面直线l,m,使得l∥α,l∥β,m∥α,m∥β.

其中,可以判定α与β平行的条件有(  )

A、1个B、2个C、3个D、4个

正确答案

B

解析

解:①α与β平行.此时能够判断①存在平面γ,使得α,β都平行于γ;两个平面平行,所以正确.

②存在平面γ,使得α,β都垂直于γ;可以判定α与β平行,如正方体的底面与相对的侧面.也可能α与β不平行.②不正确.

③不能判定α与β平行.如α面内不共线的三点不在β面的同一侧时,此时α与β相交;

④可以判定α与β平行.

∵可在α面内作l′∥l,m′∥m,则l′与m′必相交.

又∵l∥β,m∥β,

∴l′∥β,m′∥β,

∴α∥β.

故选:B.

5、已知m、n是不重合的直线,α、β是不重合的平面,则下列命题正确的是(  )

A、若m⊂α,n∥α,则m∥nB、若m∥α,m∥β,则α∥βC、若α∩β=n,m∥n,则m∥βD、若m⊥α,m⊥β,则α∥β

正确答案

D

解析

解:若m⊂α,n∥α,则m与n可能平行也可能异面,故A为假命题;

若m∥α,m∥β,则α与β也可能相交,故B为假命题;

若α∩β=n,m∥n则m可能在平面β上,故C为假命题;

在D中,此命题正确.因为垂直于同一直线的两个平面互相平行;

故选:D.

6、已知直线m、n和平面α、β满足m⊥n,m⊥α,α⊥β,则(  )

A、n⊥βB、n∥β,或n⊂βC、n⊥αD、n∥α,或n⊂α

正确答案

D

解析

解:由题意结合图形易知D正确

故选:D.

74b467660988db7f5ecd4b5fe2408e89.png

二.解答题(共4小题,共52分)

7、(14分)如图,在正方体ABCD﹣A1B1C1D1中:

(1)证明:平面A1BD∥平面D1B1C;

(2)求异面直线A1B与B1D1所成角的大小.

591c2ca07ba9c55c59c76e8e2d539c6c.png

正确答案

见解析

解析

证明:(1)因为A1D∥B1C,A1D⊂平面A1BD,B1C⊄平面A1BD,

所以B1C∥平面A1BD.

因为BD∥B1D1,BD⊂平面A1BD,B1D1⊄平面A1BD,

所以B1D1∥平面A1BD.

又B1D1∩B1C=B1

所以平面A1BD∥平面B1D1

解:(2)因为BD∥B1D1

所以∠A1BD就是异面直线A1B与B1D1所成角或其补角.

又因为A1B=BD=A1D,所以∠A1BD=60°,

所以异面直线A1B与B1D1所成角的大小为60°.

a0472bae114a651f08f3958dd747c82b.png

8、(10分)如图,已知正方体ABCD﹣A1B1C1D1中,M是AA1的中点,N是BB1的中点.

求证:平面MDB1∥平面ANC.

8dd5d71703fbb55eb2ed6f11ab82b13f.png

正确答案

见解析

解析

证明:如图,连接MN.

∵M,N分别是所在棱的中点,

∴四边形AMB1N和四边形MNCD是平行四边形.

∴MB1∥AN,CN∥MD.

又∵MB1⊂平面MDB1,MD⊂平面MDB1,MB1∩MD=M,

∴MB1∥平面ANC,MD∥平面ANC.

∴平面MDB1∥平面ANC.

328e2f1b446a537662b156502f66d369.png

9、(14分)如图在四棱锥P一ABCD中,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,BC=2AD,AC与BD交于点O,点M,N分别在线PC、AB上,074bd3346823b081cfe91f588a17b85c.png77527c9f4585d659d521af4f42074443.png=2.

(Ⅰ)求证:平面MNO∥平面PAD;

(Ⅱ)若平面PA⊥平面ABCD,∠PDA=60°,且PD=DC=BC=2,求几何体M﹣ABC的体积.

f407939f13aef87f320f023a99d82498.png

正确答案

见解析

解析

证明:(Ⅰ)在梯形ABCD中,∵AD∥BC,

∴0C:OA=BC:AD=2,

又BN=2NA,

∴ON∥BC∥AD,

∵AD⊂平面PAD,ON⊄平面PAD,

∴ON∥平面PAD,

在△PAC中,

∵OC:OA=BC:AD=2,CM=2MP,

∴OM∥AP,

AP⊂平面PAD,OM⊄平面PAD,

∴OM∥平面PAD,

∵OM⊂平面OMN,ON⊂平面OMN,且OM∩ON=0,

∴平面MNO∥平面PAD;    

(Ⅱ)在△PAD中,PA2=PD2+AD2﹣2PD•AD•cos∠PDA=3

∴PA2+AD2=PD2,即PA⊥AD,又平面PAD⊥平面ABCD

∴PA⊥平面ABCD,又由(Ⅰ)知OM∥AP,

∴MO⊥平面ABC

且MO=ea0356e6f29ae07f135de9841b4e29bd.pngAP=584df03101626e34b76b86521afa2519.png

在梯形ABCD中,CD=BC=2AD=2,

∠BAD=90°,

∴AB=84619646d208c33229c53b2e09611b8f.png

∴△ABC的面积S=6eeea26d5edca61b0e70d2696b7d869c.pngAB•BC=84619646d208c33229c53b2e09611b8f.png

∴几何体M﹣ABC的体积V=9a097a7730d900f27b66c1dce96acfa7.pngMO•S=a96fe090abc8d71f7b78e517a3a7b29e.png

1fb21b4a59dffe58d32979d244ded194.png

10、(14分)如图,在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,AB=1,PA=2.

(Ⅰ)证明:直线CE∥平面PAB;

(Ⅱ)求三棱锥E﹣PAC的体积.

865913cdb452813a9e996201b4611a42.png

正确答案

见解析

解析

解:(1)取AD中点F,连接EF、CF

∴△PAD中,EF是中位线,可得EF∥PA

∵EF⊈平面PAB,PA⊆平面PAB,∴EF∥平面PAB

∵Rt△ABC中,AB=1,∠BAC=60°,∴AC=0810b8c385facc699510cc9e55a88f37.png=2

又∵Rt△ACD中,∠CAD=60°,

∴AD=4,结合F为AD中点,得△ACF是等边三角形

∴∠ACF=∠BAC=60°,可得CF∥AB

∵CF⊈平面PAB,AB⊆平面PAB,∴CF∥平面PAB

∵EF、CF是平面CEF内的相交直线,

∴平面CEF∥平面PAB

∵CE⊆面CEF,∴CE∥平面PAB

(2)∵PA⊥平面ABCD,CD⊆平面ABCD,∴PA⊥CD

又∵AC⊥CD,PA、AC是平面PAC内的相交直线

∴CD⊥平面PAC

∵CD⊆平面DPC,∴平面DPC⊥平面PAC

过E点作EH⊥PC于H,由面面垂直的性质定理,得EH⊥平面PAC

∴EH∥CD

Rt△ACD中,AC=2,AD=4,∠ACD=90°,所以CD=3726a7ee40be49ed00b9e27375d5022d.png=2387f6de92d7046cd8b5bddada8ad289b.png

∵E是CD中点,EH∥CD,∴EH=c1a89dc7fb1a31386f00b7bea2375a4a.pngCD=387f6de92d7046cd8b5bddada8ad289b.png

∵PA⊥AC,∴SRt△PAC34ff6e88743153503f4877788b21ac9e.png=2

因此,三棱锥E﹣PAC的体积V=615c54c8ac6c21ceec77bed5e9337661.pngS△PAC×EH=c1a28749e67ca82b839086cc7eb9158d.png.

c5f15b0fac361764a6dfcc512aa5f804.png

34e43f3993977179d66ae4d3986ba0f5.gif 声明:本公众号尊重知识产权,素材来源于网络,若有侵权请联系删除。 e3f75de5255da4f15d006f56851c1f85.png

关注我,获取更多资料

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页