这篇文案汇总了Transformer模型的基本原理、训练过程、应用场景以及性能优化等多个方面的面试题,一共

一、基础原理与数学模型(21题)

  1. Transformer为何使用多头注意力机制?
  2. Transformer为什么Q和K使用不同的权重矩阵生成?
  3. Transformer计算attention的时候为何选择点乘而不是加法?
  4. 为什么在进行softmax之前需要对attention进行scaled?
  5. 在计算attention score的时候如何对padding做mask操作?
  6. 为什么在进行多头注意力的时候需要对每个head进行降维?
  7. 讲一下Transformer的Encoder模块?
  8. 为何在获取输入词向量之后需要对矩阵乘以embedding size的开方?
  9. 简单介绍Transformer的位置编码?
  10. 了解哪些关于位置编码的技术?
  11. 讲一下Transformer中的残差结构?
  12. 为什么transformer块使用LayerNorm而不是BatchNorm?
  13. 讲一下BatchNorm技术及其优缺点?
  14. 描述一下Transformer中的前馈神经网络?
  15. Encoder端和Decoder端是如何进行交互的?
  16. Decoder阶段的多头自注意力和encoder的多头自注意力有什么区别?
  17. Transformer的并行化提现在哪个地方?
  18. 描述一下wordpiece model 和 byte pair encoding?
  19. Transformer训练的时候学习率是如何设定的?
  20. Dropout是如何设定的?
  21. Bert的mask为何不学习transformer在attention处进行屏蔽score的技巧?

二、训练与优化(19题)

  1. Transformer中的可训练Queries、Keys和Values矩阵从哪儿来?
  2. Transformer的Feed Forward层在训练的时候到底在训练什么?
  3. 具体分析Transformer的Embeddings层、Attention层和Feedforward层的复杂度。
  4. Transformer的Positional Encoding如何表达相对位置关系?
  5. Layer Normalization蕴含的神经网络的假设是什么?
  6. 从数据的角度分析Transformer中的Decoder和Encoder的依存关系。
  7. 描述Transformer中的Tokenization的数学原理、运行流程、问题及改进方法。
  8. 描述把self-attention复杂度从O(n^2)降低到O(n)的方案。
  9. Bert的CLS能够有效的表达Sentence Embeddings吗?
  10. 使用BPE进行Tokenization对于Cross-lingual语言模型的意义?
  11. 如何训练Transformer处理数据量差异大的多类别数据?
  12. 如何使用多种类小样本对Transformer训练取得好的分类效果?
  13. 在输入Embeddings时是否可以使用多方来源的词嵌入?
  14. 更深更宽的Transformer网络是否意味着更强的预训练模型?
  15. 如何降低Transformer中Embedding中的参数数量?
  16. 描述Trasnformer不同Layer之间的FeedForward神经网络之间的联系。
  17. 如何降低Transformer的Feedforward层的参数数量?
  18. Transformer的Layer深度过深会可能导致什么现象?
  19. 如何大规模降低Transformer中Embedding中的参数数量?

三、应用与实践(6题)

  1. 如何使用Transformer实现Zero-shot Learning?
  2. 描述至少2种对不同训练模型训练出来的Embeddings进行相似度比较的方法。
  3. 如何使得小模型例如LSTM具有大模型例如Bert的能力?
  4. 训练后的BERT模型泛化能力的限制是什么?
  5. GPT的auto-regressive语言模型架构在信息表示方面有什么缺陷?
  6. 描述BERT中MLM实现中的缺陷及可能的解决方案。

有需要全套的AI大模型面试题及答案解析资料,可以在文末免费领取【保证100%免费

四、技术深入与创新应用(29题)

  1. 从数学角度阐明对Transformer任意位置和长度进行Mask的方式。
  2. 描述Encoder和Decoder中Attention机制的不同之处。
  3. 描述Transformer中Decoder的Embedding layers架构设计、运行流程和数学原理。
  4. 描述Transformer进行Training的全生命周期的在Decoder中是如何进行Embedding的。
  5. 描述Transformer进行Inference的全生命周期的在Decoder中是如何进行Embedding的。
  6. 如果Transformer采用和Inference同样的流程进行Training,会有什么弊端?
  7. 为何Transformer的Matrix Dimensions是3D的?
  8. 描述只由一个Encoder和Decoder的Transformer使用了Attention的地方及其功能。
  9. 描述Training和Inference时Masking在Transformer使用Attention机制的地方的功能和数学实现。
  10. 描述Transformer的Training Loss工作流程和数学公式。
  11. 阐述Multi-head Attention机制中通过Linear layer计算QKV的logical和physical partition。
  12. 阐述Transformer中所有可训练操作的功能。
  13. 阐述QKV在Transformer中的功能。
  14. 解释Transformer中Attention Score衡量不同Words Relevance的原理。
  15. 描述Transformer如何知道什么样的Weights能更好地表达不同信息部分的注意力。
  16. 如何减少Transformer中训练后的Word Embeddings的Bias?
  17. 解决Self-attention和Word与自身Attention的问题?
  18. Transformer如何有效表示NLP、CV等AI领域的信息?
  19. 通过Ground Truth训练Transformer使其具有泛化能力的原因?
  20. Transformer的Attention计算时为何需要进行Scaling?
  21. 输入文本词汇的顺序如何由position encoding或multi-head attention实现?
  22. 描述multi-head attention的实现方式。
  23. 描述Transformer中non-linear操作的类型和数学原理。
  24. 为何Transformer论文作者声称"Attention is all you need"?
  25. 谈一下Teacher forcing的数学原理及其在Transformer中的应用。
  26. 在Transformer中Decoder进行Inference时接收的输入信息差异?
  27. 描述BERT的Tokenization机制的优势和不足。
  28. Transformer的Input长度为何受限?
  29. 使用Pytorch实现Transformer时,如何使用或停用optimizer.zero_grad()?

五、性能优化与模型改进(7题)

  1. Transformer采用Inference流程进行Training的问题?
  2. Transformer的Matrix Dimensions为何是3D的?
  3. 描述单Encoder和Decoder的Transformer使用Attention的地方及其功能。
  4. Training和Inference时Masking在Transformer Attention机制中的功能和数学实现。
  5. 描述Transformer的Training Loss工作流程和数学公式。
  6. 阐述Multi-head Attention中通过Linear layer计算QKV的partition。
  7. 如何减少Transformer中训练后的Word Embeddings的Bias?

六、特定应用场景与解决方案(2题)

  1. 如何使用Transformer实现对话系统并判定用户交流内容是否离题?
  2. Transformer训练时学习率和Dropout的设定?