python math算向量的模_Python素数检测的方法

本文介绍了Python中检测素数的两种方法:因子检测和费马小定理,以及模幂运算在素数检测中的应用。通过实现快速模幂运算,可以高效地进行费马测试和Miller-Rabin检测,后者具有较高的准确性。文章提供了相关函数的详细代码实现。
摘要由CSDN通过智能技术生成

这篇文章主要介绍了Python素数检测的方法,实例分析了Python素数检测的相关技巧,需要的朋友可以参考下

f38bee01573b7b7c1bdfdbd459c3c834.png

Python素数检测的方法

本文实例讲述了Python素数检测的方法。分享给大家供大家参考。具体如下:因子检测:

检测因子,时间复杂度O(n^(1/2))

1 def is_prime(n):

2 if n < 2:

3 return False

4 for i in xrange(2, int(n**0.5+1)):

5 if n%i == 0:

6 return False

7 return True

费马小定理:

如果n是一个素数,a是小于n的任意正整数,那么a的n次方与a模n同余

实现方法:

选择一个底数(例如2),对于大整数p,如果2^(p-1)与1不是模p同余数,则p一定不是素数;否则,则p很可能是一个素数

2**(n-1)%n 不是一个容易计算的数字

模运算规则:

1 (a^b) % p = ((a % p)^b) % p

2 (a * b) % p = (a % p * b % p) % p

计算X^N(% P)

可以

如果N是偶数,那么X^N =(X*X)^[N/2];

如果N是奇数,那么X^N = X*X^(N-1) = X *(X*X)^[N/2];

1 def xn_mod_p(x, n, p):

2 if n == 0:

3 return 1

4 res = xn_mod_p((x*x)%p, n>>1, p)

5 if n&1 != 0:

6 res = (res*x)%p

7 return res

也可以归纳为下面的算法 两个函数是一样的

1 def xn_mod_p2(x, n, p):

2 res = 1

3 n_bin = bin(n)[2:]

4 for i in range(0, len(n_bin)):

5 res = res**2 % p

6 if n_bin[i] == '1':

7 res = res * x % p

8 return res

有了模幂运算快速处理就可以实现费马检测

费马测试当给出否定结论时,是准确的,但是肯定结论有可能是错误的,对于大整数的效率很高,并且误判率随着整数的增大而降低

1 def fermat_test_prime(n):

2 if n == 1:

3 return False

4 if n == 2:

5 return True

6 res = xn_mod_p(2, n-1, n)

7 return res == 1

MILLER-RABIN检测

Miller-Rabin检测是目前应用比较广泛的一种

二次探测定理:如果p是一个素数,且0 费马小定理:a^(p-1) ≡ 1(mod p)

这就是Miller-Rabin素性测试的方法。不断地提取指数n-1中的因子2,把n-1表示成d*2^r(其中d是一个奇数)。那么我们需要计算的东西就变成了a的d*2^r次方除以n的余数。于是,a^(d * 2^(r-1))要么等于1,要么等于n-1。如果a^(d * 2^(r-1))等于1,定理继续适用于a^(d * 2^(r-2)),这样不断开方开下去,直到对于某个i满足a^(d * 2^i) mod n = n-1或者最后指数中的2用完了得到的a^d mod n=1或n-1。这样,Fermat小定理加强为如下形式:

尽可能提取因子2,把n-1表示成d*2^r,如果n是一个素数,那么或者a^d mod n=1,或者存在某个i使得a^(d*2^i) mod n=n-1 ( 0<=i

定理:若n是素数,a是小于n的正整数,则n对以a为基的Miller测试,结果为真.

Miller测试进行k次,将合数当成素数处理的错误概率最多不会超过4^(-k)

1 def miller_rabin_witness(a, p):

2 if p == 1:

3 return False

4 if p == 2:

5 return True

6 #p-1 = u*2^t 求解 u, t

7 n = p - 1

8 t = int(math.floor(math.log(n, 2)))

9 u = 1

10 while t > 0:

11 u = n / 2**t

12 if n % 2**t == 0 and u % 2 == 1:

13 break

14 t = t - 1

15 b1 = b2 = xn_mod_p2(a, u, p)

16 for i in range(1, t + 1):

17 b2 = b1**2 % p

18 if b2 == 1 and b1 != 1 and b1 != (p - 1):

19 return False

20 b1 = b2

21 if b1 != 1:

22 return False

23 return True

24 def prime_test_miller_rabin(p, k):

25 while k > 0:

26 a = randint(1, p - 1)

27 if not miller_rabin_witness(a, p):

28 return False

29 k = k - 1

30 return True

希望本文所述对大家的Python程序设计有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值