这篇文章主要介绍了Python素数检测的方法,实例分析了Python素数检测的相关技巧,需要的朋友可以参考下
本文实例讲述了Python素数检测的方法。分享给大家供大家参考。具体如下:因子检测:
检测因子,时间复杂度O(n^(1/2))
1 def is_prime(n):
2 if n < 2:
3 return False
4 for i in xrange(2, int(n**0.5+1)):
5 if n%i == 0:
6 return False
7 return True
费马小定理:
如果n是一个素数,a是小于n的任意正整数,那么a的n次方与a模n同余
实现方法:
选择一个底数(例如2),对于大整数p,如果2^(p-1)与1不是模p同余数,则p一定不是素数;否则,则p很可能是一个素数
2**(n-1)%n 不是一个容易计算的数字
模运算规则:
1 (a^b) % p = ((a % p)^b) % p
2 (a * b) % p = (a % p * b % p) % p
计算X^N(% P)
可以
如果N是偶数,那么X^N =(X*X)^[N/2];
如果N是奇数,那么X^N = X*X^(N-1) = X *(X*X)^[N/2];
1 def xn_mod_p(x, n, p):
2 if n == 0:
3 return 1
4 res = xn_mod_p((x*x)%p, n>>1, p)
5 if n&1 != 0:
6 res = (res*x)%p
7 return res
也可以归纳为下面的算法 两个函数是一样的
1 def xn_mod_p2(x, n, p):
2 res = 1
3 n_bin = bin(n)[2:]
4 for i in range(0, len(n_bin)):
5 res = res**2 % p
6 if n_bin[i] == '1':
7 res = res * x % p
8 return res
有了模幂运算快速处理就可以实现费马检测
费马测试当给出否定结论时,是准确的,但是肯定结论有可能是错误的,对于大整数的效率很高,并且误判率随着整数的增大而降低
1 def fermat_test_prime(n):
2 if n == 1:
3 return False
4 if n == 2:
5 return True
6 res = xn_mod_p(2, n-1, n)
7 return res == 1
MILLER-RABIN检测
Miller-Rabin检测是目前应用比较广泛的一种
二次探测定理:如果p是一个素数,且0 费马小定理:a^(p-1) ≡ 1(mod p)
这就是Miller-Rabin素性测试的方法。不断地提取指数n-1中的因子2,把n-1表示成d*2^r(其中d是一个奇数)。那么我们需要计算的东西就变成了a的d*2^r次方除以n的余数。于是,a^(d * 2^(r-1))要么等于1,要么等于n-1。如果a^(d * 2^(r-1))等于1,定理继续适用于a^(d * 2^(r-2)),这样不断开方开下去,直到对于某个i满足a^(d * 2^i) mod n = n-1或者最后指数中的2用完了得到的a^d mod n=1或n-1。这样,Fermat小定理加强为如下形式:
尽可能提取因子2,把n-1表示成d*2^r,如果n是一个素数,那么或者a^d mod n=1,或者存在某个i使得a^(d*2^i) mod n=n-1 ( 0<=i
定理:若n是素数,a是小于n的正整数,则n对以a为基的Miller测试,结果为真.
Miller测试进行k次,将合数当成素数处理的错误概率最多不会超过4^(-k)
1 def miller_rabin_witness(a, p):
2 if p == 1:
3 return False
4 if p == 2:
5 return True
6 #p-1 = u*2^t 求解 u, t
7 n = p - 1
8 t = int(math.floor(math.log(n, 2)))
9 u = 1
10 while t > 0:
11 u = n / 2**t
12 if n % 2**t == 0 and u % 2 == 1:
13 break
14 t = t - 1
15 b1 = b2 = xn_mod_p2(a, u, p)
16 for i in range(1, t + 1):
17 b2 = b1**2 % p
18 if b2 == 1 and b1 != 1 and b1 != (p - 1):
19 return False
20 b1 = b2
21 if b1 != 1:
22 return False
23 return True
24 def prime_test_miller_rabin(p, k):
25 while k > 0:
26 a = randint(1, p - 1)
27 if not miller_rabin_witness(a, p):
28 return False
29 k = k - 1
30 return True
希望本文所述对大家的Python程序设计有所帮助。