我正在寻找一个
java库/实现,它支持以合理的精度计算β分布的逆累积分布函数(也就是分位数的估计).
假设我想通过大量试验来计算β分布的可信区间.在apache commons math …
final int trials = 161750;
final int successes = 10007;
final double alpha = 0.05d;
// the supplied precision is the default precision according to the source code
BetaDistribution betaDist = new BetaDistribution(successes + 1, trials - successes + 1, 1e-9);
System.out.println("2.5 percentile :" + betaDist.inverseCumulativeProbability(alpha / 2d));
System.out.println("mean: " + betaDist.getNumericalMean());
System.out.println("median: " + betaDist.inverseCumulativeProbability(0.5));
System.out.println("97.5 percentile :" + betaDist.inverseCumulativeProbability(1 - alpha / 2d));
提供
2.5 percentile :0.062030402074808505
mean: 0.06187249616697166
median: 0.062030258659508855
97.5 percentile :0.06305170793994147
问题是2.5百分位数和中位数是相同的,同时两者都大于平均值.
相比之下,R-package binom提供了
binom.confint(10007+1,161750+2,methods=c("agresti-coull","exact","wilson"))
method x n mean lower upper
1 agresti-coull 10008 161752 0.0618725 0.06070873 0.06305707
2 exact 10008 161752 0.0618725 0.06070317 0.06305756
3 wilson 10008 161752 0.0618725 0.06070877 0.06305703
和R-package统计数据
qbeta(c(0.025,0.975),10007+1,161750-10007+1)
[1] 0.06070355 0.06305171
为了得到R的结果,这是Wolfram Alpha告诉我的
关于要求的最后说明:
>我需要运行很多这些计算.因此任何解决方案都不应该花费超过1秒的时间(与41ms(虽然错误的)apache commons math相比仍然很多).
>我知道可以在java中使用R.由于我在此不再详述的原因,如果其他任何事情(纯java)失败,这是最后一个选项.
更新21.08.12
It seems该问题已经修复或至少在apache-commons-math的3.1-SNAPSHOT中有所改进.对于上面的用例
2.5 percentile :0.06070354581340706
mean: 0.06187249616697166
median: 0.06187069085946604
97.5 percentile :0.06305170793994147
更新23.02.13
虽然乍一看这个问题和它的回答可能过于局部化,但我认为它很好地说明了一些数值问题无法通过首先出现在头脑中的方法来解决(有效).所以我希望它仍然开放.