numpy中的reshape函数详解

本文详细探讨了Python numpy库中的reshape函数,通过实例分析了如何将一个三维矩阵【5,4,3】转换为【5,12】的矩阵。在不指定order参数时,reshape操作沿第二维进行切割。当尝试将矩阵保持整体性时,发现order参数(如C或F)会影响填充方式,C模式按行优先,F模式按列优先。然而,reshape函数无法满足特定的矩阵排列需求,因此可能需要使用其他numpy函数来替代。" 125528590,13951349,Java开发的广泛应用领域解析,"['java', 'jvm', '开发语言', 'spring', '架构']
摘要由CSDN通过智能技术生成

Python中的numpy数组有一个Reshape方法,我们时常使用,但是目前为止没有对他进行深入的研究。在多维矩阵的情况下,reshape出来的,到底是什么样子的矩阵?所以尝试构造一个3维矩阵,剖析一下reshape的原理。

首先构造一个【5,4,3】的三维矩阵a,具体数值如下图所示

v2-8af2a0ec6f468af8ec00edb20e486b29_b.png


然后将其reshape成【5,12】的矩阵,看到底是如何变化的

在reshape中未加order参数时,结果如下图所示

v2-91f95a36c7e48bcabb4da3d411fb113b_b.jpg


可以看出reshape操作是将第二维进行了切割,把4x3的矩阵变成了1x12的矩阵

尝试加入不同order参数,发现不管是A还是C和F,结果都

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值