【多模态】资料小抄

================My blog=====================

【跨模态】神经搜索实践:Jina VCED: http://t.csdn.cn/EqFww

================资料=====================

1. CLIP模型的使用和训练-利用CLIP实现zero-shot的分类任务  http://t.csdn.cn/lbRlg 

2. CLIP 论文逐段精读【论文精读】  https://www.bilibili.com/video/BV1SL4y1s7LQ/?spm_id_from=333.999.0.0&vd_source=fab4cd66aafcb3b54c4bc627c1dcaac1

3. 基于矩阵或注意力《Efficlent Low*rank Multimodal Fusion with Modality-Specific Factors》

4. 双塔《Pretralning Task.Agnostic Vislolinguistic Representations for Vislonand·Language Tasks》

5. 单流《A Universal Encoder for Vislon and Language by Cross-modal Pre-training》

6. 基于对比学习的预训练模型《CommerceMM: Large-Scale Commerce MultiModsl Representatlon Learning with Omni Retrleval》

7. 多模态预训练《BEIT: BERT Pre-Training of lmage Transformers》

8. 基于predict masked patch的预训练模型《Masked Autoencoders Aro Scalable Vislon Leaners》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不菜不菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值